-A190 665 ACOUIRING GENERAL ITERATIVE CONCEPTS BY REFORMULAT ING
EXPLANATIONS OF 085 (U) ILLINOIS U“lV RT URM coLL
OF ENGINEERING J N SHAVLIK ET AL DEC
UNCLARSSIFIED UILU-ENG-87-2277 N80O14-86-K-0309 F/6 1279

e i
= 22

o

e

E

s
T T
i 25

iz flis lls

.

MIZROCOPY RESOLUTION TEST CHART

wat ONAL BUREAU oF SVINDIM—'SG\—

® ° - -
NS SCOC AL AT Y ., i ® Y

“* - ¢" -\'\f‘.«f- "'\(\' v',"'\'V'-".‘ N, T
(' '&,p' ~T WY EAC ATy ('\(-'J. s 3 &)\

ettt Kho i \,r\}.'- e vl&‘.r .~\;-\

“u Vf‘,"n‘\#'&.r - o -‘."- ('\. DS 5'\';\’ % 4‘»" *

% LOn e AN -~ -,.5\,.’._)‘.,_ . N
. ".'.' oY,

ETRNETTE TETE IETE T TUST T T ALYV N IR YT U TURUTU FLTUTFJURLUTF Y UL WL W W W W e W T e

) December 1987 . ' UILU-ENG-87-2277 @ -
| >

COORDINATED SCIENCE LABORATORY
College of Engineering

g MiE Cop r

R }P }’ ’

AD-A120 665 :

" ACQUIRING GENERAL

F ITERATIVE CONCEPTS

: BY REFORMULATING
EXPLANATIONS OF
OBSERVED EXAMPLES

Jude W. Shavlik

Gerald F. DeJong
f "'"\;Feewloae

E A

q

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Aprroved for Public Kelease. Distribution Unlimited.
‘ 88 2 18 020

vl'
A T SRR TR ',, ({ T A
e " o o wl&ﬂ
R e e R A AR :"f-" , 10 o "Q’Aﬂhnnaax’xh v".r-.

L aias Aok o de ot 2 '---'vui‘*‘ter"‘H“»’\'ﬂ'\v!‘.\':"\'(ﬂ\?"'.'a"“l*‘(ﬂv."-‘t*q - - m 1m w - m = - - -

~ UNCLASSIFLED
.. LURITY CLASSIFICATION KIS PA
o
E REPORT DOCUMENTATION PAGE
v W T e e T T TY STy ——
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
N4 Unclassified None
\- 1 -W T ———— e~ e~~~
N . SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY OF REPORT
Approved for public release;
- 2b. DECLASSIFICATION / DOWNGRADIN E0U ’
ﬁ SIFICA G SCHEDULE distribution unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING QRGANIZATION REPORT NUMBER(S)
i y UILU-ENG-87-2277
| o
o 6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE §YMBOL 7a. NAME OF MONITORING ORGANIZATION
Coordinated Science Lab (if applicabie) Office of Naval Research
University of Illinois N/A National Se ;
s 6c ADDRESS (City, Stete, end 2/P Code) 7b. ADDRESS (City, State, and 2IP Coae)
' 1101 W. Springfield Avenue 800 N, Quincy St., Arlington, VA 22217
& Urbana, IL 61801 1800 G, Street N.W., Washington, D,C, 20550
“
4
- 8a. NAME QF FUNDING / SPONSORING 8b. OFF!CE.SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
— ORGANIZATION (f applicabie) NO0O014-86-K-0309
-, ONR/NSF NSF IST 85-11542
8c. AD?RESS (C_ily. State, and 2IP Code) 10. SOURCE OF FUNDING NUMBERS
. 800 N. Quincy St., Arlington, VA 22217 PROGRAM PROJECT TASK WORK UNIT
< j1800 G. Street N.W., Washingtom, D.C. 20550 ELEMENT NO. | NO. NO. ACCESSION 11O.
-
11 TITLE (inrtude Secunty Clasufication)
:.: Acquiring General lterative Concepts by Reformulating Explanations of Qbserved Examples
12. PERSONAL AUTHOR(S)
- Shavlik, Jude W., DelJong, Gerald F.
t3a. TYPE QOF REPORT 13b. TiIME COVERED 14. DATE OF REPORT (Yesr, Morrth, Day) §. PAGE COUNT
Technical FROM TO December 1987 54
P 16. SUPPLEMENTARY NOTATION
1)
bl
17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if mecessary and identfy by block number)

! FIELD GROUP SUB-GROUP | ,artificial intelligence, machine learning, explanation-base
A learning, generalizing number, generalizing to N, BAGGER,

. - émpir‘ﬁlaf analysis e—

‘A 119 AdSTRACT (Continue on reverse if necessary and identify by block number) |

- Most research in explanation-based learning involves relaxing constraints on the variables in the explanation of a specific
SZ.; example, rather than generalizing the structure of the explanation itself. However, this precludes the acquisition of concepts
. where an iterative process is implicitly represented in the explanation by a fixed number of applications. Such explanations
must be reformulated during generalization. The fully-implementied BAGGER sysiem analyzes explanation structures and
x detects extendible repeated, inter-dependent applications of rules. When any are found, the explanation is extended 50 that an

arbitrary number of repeated applications of the original rule are supported. The final structure is then generulized and a new
« rule produced which embodies a crucial shift in representation. An important property of the extended rules is that their
preconditions are expressed in terms of the initial siate — they do not depend on the results of intermediate applications of the
original rule. BAGGER's generalization algorithm is presented and empirical results that demonstrate the value of generalizing

to N are reported. To illustrate the approach, the acquisition of a plan for building towess of arbitrary heipght is discussed in
detail. .,

20. OISTRIBUTION / AVALABILITY OF ABSTRACT
. FIunCLassiFEDUNLIMITED [T saME as RPT - (I OTIC USERS
22a. NAME OF RESPONSIBLE INDIVIOUAL

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified
22b. TELEPHONE (inciude Ares Code) | 22¢. OFFICE SYMBOL

:+ OD FORM 1473, 84 maR 83 APR edition may be used unti exnausted.
All other aditions are obsolete.

SECYRITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

R e P TR AR LR e

%
»~

t

P
WY

P

[2o

SN
Ly

T

S
St

XX At @22 M

2

o

§

a R gz L 1ns Bat B Bat g e Sav Buv Sas iai gav et BacoRas hd o Re - gl oRiC o AR A Al At
e g aa lal g e " ¢

Technical Report
UILU-ENG-87-2277

Acquiring General Iterative Concepts by

Reformulating Explanations of Observed Examples"'

Accession For

K U - R
NTIS GRAXI g
DTIC TAB
Jude W. Shavlik* Unannounced O
Justification _ |
Gerald F. Delong |
By '
Coordinated Science Laboratory _Distribution/ o
University of Illinois Avallsrility Codes .
Urbana, IL 61801 USA T Avail and/or
Dist Srectial
Abstract A_ /
This is an extended version of a chapter appearing in Machine Learm‘r:; An Artifical
Inzelligence Approach, Volume III. R. Michalski and Y. Kodratoff (eds.). Morgan-Kauffman, 1988. R

Most research in explanation-based learning involves relaxing constraints on the variables in
the explanation of a specific example, rather than generalizing the structure of the explanation
itself. However, this precludes the acquisition of concepts where an iterative process is implicitly
represented in the explanation by a fixed number of applications. Such explanations musl be
reformulated during generalization. The fully-implemented BAGGER system analyzes explanation
structures and detects extendible repeated. inter-dependent applications of rules. When any are
found. the explanation is extended so that an arbitrary number of repeated applications of the
original rule are supported. The final structure is then generalized and a new rule produced which
embodies a crucial shift in representation. An important property of the extended rules is that
their preconditions are expressed in terms of the initial state — they do not depend on the results of
intermediate applications of the original rule. BAGGER's generalization algorithm is presented and
empirical results that demonstrate the value of generalizing to N are reported. To illustrate the
approach. the acquisition of a plan for building towers of arbitrary height is discussed in detail.

¥ This research was partially supported by the Office of Naval Research under grant NOOO14-86-K-0309, by
the National Science Foundation under grant NSF IST 85-11542, and by a University of lllinois Cognitive
Science/ Artificial Intelligence Fellowship to the first author.

* Current address: Computer Sciences Department, University of Wisconsin, Madison, W1, $3700, USA.

’)\":‘*‘ilu’

T WET T W TN TERTIOR TUN TR WE TN TR TR TN LR TR A TV TR TUE TR TR TR T RETTR TR TR TR T N R TR T W TN ‘1

1. INTRODUCTION

Often an expert will, in the course of solving a problem, repeatedly employ an action or

collection of actions. It is an important, but difficult, problem, to correctly generalize this sequence

::: once observed. Sometimes the number of repetitions itself should be the subject of generalization.
) Other times it is quite inappropriate to alter the number of repetitions. This article addresses the
- important issue in explanation-based learning (EBL) of generalizing to N (Shavlik and DeJong,
T 1985. 19870b, 1987¢). This can involve generalizing such things as the number of entities involved
::.: in a concept or the number of times some action is performed. Generalizing number has been
" largely ignored in previous explanation-based learning research. Instead. other research has focused
P on changing constants into variables and determining the general constraints on those variables.

»

In explanation-based learning (DeJong and Mooney. 1986; Ellman, 1987: Mitchell. Keller, and

Kedar-Cabelli, 1986) a specific problem solution is generalized into a form that can be later used to

| RS R

solve conceptually similar problems. The generalization process is driven by the explanation of

why the solution worked. Knowledge about the domain allows the explanation to be developed

L]

and then generalized.

=

Consider the LEAP system (Mitchell. Mahadevan, and Steinberg, 1985). The system is shown

an example of using NOR gates 1o compute the boolean AND of two OR’s. It discovers that the

o

o

“~

- technique generalizes to computing the boolean AND of any two inverted boolean functions.
However. LEAP cannot generalize this technique to allow constructing the AND of an arbitrary

! number of inverted boolean functions using a multi-inpu. NOR gate. This is the case even if

LEAP's initial background knowledge were to include the general version of DeMoergan's Law and

L 4

the concept of multi-input VJOR gates. Generalizing the number of functions requires alteration of

the original example’s explanation.

g

Ellman’s (1985) system also illustrates the need for generalizing number. From an example

of a four-bit circular shift register. his system constructs a generalized design for an arbitrary

(53

four-bit permutation register. A design for an N-bit circular shift register cannot be produced. As

Eliman points out. such generalization. though desirable. cannot be done using the technique of

>
v, _)
f changing constants to variables.
A .'
NG Manyv important concepts. in order to be properly learned. require generalization of number.
For example. physical laws such as momentum and energy conservation apply to arbitrary
:: numbers of objects. constructing towers of blocks requires an arbitrary number of repeated

7

PP PO
SRR,

G Ve A D

M) Acquiring General Iterative Concepts 2
o

s
St
LS
: _‘,'Q stacking actions. and setting a table involves a range of possible numbers of guests. In addition.
j-:;“- there is recent psychological evidence (Ahn. Mooney. Brewer, and Delong. 1987) that people can
) N generalize number on the basis of one example.
o
; j: Repetition of an action is not a sufficient condition for generalization to N to be appropriate.
st gy
N Compare two simple examples. Generalizing to N is necessary in one but inappropriate in the
B
e other. The examples are:
9.‘.00.
I

® observing a previously unknown method of moving an obstructed block, and

X

® seeing, for the first time, a toy wagon being built.

Suppose a learning system observes an expert achieving the desired states. In each case, consider

o

.q;: what general concept should be acquired.

:;:' ‘ In the first example, the expert wishes to move, using a robot manipulator. a block which has

‘.‘ ‘ four other blocks stacked in a tower on top of it. The manipulator can pick up only one block at a
'F-f; time. The expert’'s solution is to move all four of the blocks in turn to some other location. After

i ‘:‘j the underlying block has been cleared, it is moved. In the second example, the expert wishes to

.'-‘: construct a movable rectangular platform, one that is stable while supporting any load whose

o center of mass is over the platform. Given the platform and a bin containing two axles and four

22‘2 wheels. the expert’s solution is to first attach each of the axles to the platform. Next all four of the

S;i wheels are grabbed in turn and mounted on an axle protrusion.

W

. ')' This comparison illustrates an important problem in explanation-based learning. Generalizing

::":::' the block unstacking example should produce a plan for unstacking any number of obstructing

E':' . blocks. not just four as observed. The wagon-building example. however, should not generalize the

L'." ! number "4.” It makes no difference whether the system is given a bin of five, six, or 100 wheels.

:;,:.;.’ because only four wheels are needed to fulfill the functional requirements of a stable wagon.

oay

::"::: Standard explanation-based learning algorithms (DeJong and Mooney. 1986; Fikes. Hart. and

E;:'::: Nilsson, 1972; Hirsh, 1987; Kedar-Cabelli and McCarty, 1987; Mitchell. Keller, and Kedar-Cabelli.

" 1986: Mooney and Bennett. 1986; O'Rorke. 1987a) and similar algorithms for chunking (Laird.

:::: Rosenbloom, and Newell, 1986) cannot treat these cases differently. These algorithms. possibly

‘E: after pruning the explanation to eliminate irrelevant parts. replace constants with constrained

t? variables. They cannot significantly augment the explanation during generalization. Thus. the

:.':: 3 building-a-wagon type of concept will be correctly acquired but the unstacking-to-move concept will

R

B

N ‘c'

®4

[W) R N . g
¥y R O, W q 3 N M A T R AN 0 e R ST N Y e \;s%\-m
"’I"r"!"‘.. |?"l. .l. .h ; !":?“Q. .:‘. 0,19,870, 870! .& 'h Q!‘.l- !.n‘ LS .‘) a...'l A .?‘ 1y AN M 0s) I, 0y ﬁ%&m‘&’ﬂm 208 V0,

- W T R R N RETERE T EREITERE AR NEAETNMEWUETWE U TSI TV IR I LR Y U R YN L NN YETNETETYRN AT ATS T YT

Acquiring General Iterative Concepts 3

be undergeneralized. The acquired schema will have generalized the identity of the blocks so that
the target block need not be occluded by the same four blocks as in the example. Any four

obstructing blocks can be unstacked. However, there must be exactly four blocks.! Unstacking five

or more blocks is beyond the scope of the acquired concept.

Note that EBL systems do not work correctly on the building-a-wagon kind of problems either
— they just get lucky. They do nothing to augment explanation structures during generalization.
It just happens that to acquire a schema to build a wagon, not generalizing the explanation

structure is the appropriate thing to do.

One can. of course, simply define the scope of EBL-type systems to exclude the unstacking-to-
move concept and those like it. This is a mistake. First, the problem of augmenting the explanation
during generalization. once seen, is ubiquitous. It is manifested in one form or another in most
real-world domains. Second. if one simply defines the problem away. the resulting system could
never guarantee that any of its concepts were as general as they should be. Even when such a
system correctly constructed a concept like the building-a-wagon schema. it could not know that it
had generalized properly. The system could not itself tell which concepts fall within its scope and

which do not.

Observations of repeated application of a rule or operator may indicate that generalizing the
number of rules in the explanation may be appropriate. However, alone this is insufficient. To be

conducive 1o number generalization there must be a certain recursive structural pattern. That is.

each application must achieve preconditions for the next. For example. consider stacking blocks.

The same sort of repositioning of blocks occurs repeatedly, each building on the last. In this article,

o

the vocabulary of predicate calculus is adopted to investigate this notion of structural recursion.

The desired form of structural recursion is manifested as repeated application of an inference rule

=

in such a manner that a portion of each consequent is used to satisfy some of the antecedents of the

next application.

B The next section introduces an implemented system designed 1o generalize the structure of
pr explanations. Subsequent sections describe the algorithm used and iilustrate it with a detailed
s

(s example. Finally. before the conclusion. there are an empirical validation of the merits of
;.-(! The SOAR svstem (Laird et ai, 1986) would seem to acquire a number of concepts which together are slight-
Y 1v more general. As well as a new operator for moving four blocks, the system would acquire new operators

for moving three blocks. 1wo blocks. and one block, but not for five or more.

1 B REhe ,‘f.-‘f,' f,."n’,\'.f.‘; -ﬂ{vf\'f V,‘\sq“\'-('j.("(‘,; "J“: - "‘ _\‘..' ‘ AR .V'_n'},-.{- "> ATR L R VA A .
KXol AN s ’.\0‘ oty) ol ‘.No‘l.ol.u U PN Q\O ot e

$. 54 e B A A

a e s a8 -

I~
A mmma

Acquiring General Iterative Concepts 4

| !
N

N ' generalizing the structure of explanations (including a comparison to the results of a standard EBL

v algorithm), a discussion of related work. and descriptions of several open research problems. 1
. i
)

7- 2. THE BAGGER SYSTEM

.

:. The BAGGER system (Building Augmented Generalizations by Generating Extended !
~ Recurrences) analyzes predicate calculus proofs and attempts to construct concepts that involve

generalizing to N. Most of the examples under study use the situation calculus (McCarthy, 1963)
1o reason about actions., in the style of Green(1969). (Green's formulation is also discussed in

v (Nilsson. 1980).)

]
ppe & % g Suahillh

o 2.1. Situation Calculus
-
. In situation calculus, predicates and functions whose values may change over time are given
¢ an extra argument which indicates the situation in which they are being evaluated. For example,
j’ rather than using the predicate On(x,y). indicating that x is on y, the predicate Onlx.,y,s) is used.
' indicated that in situation s, x is on y. In this formulation, operators are represented as functions :
1
by that map from one situation to another situation.
) . . B
K Problem solving with BAGGER's situational calculus rules can be viewed as transforming and
N expanding situations until one is found in which the goal is known to be achieved. The BAGGER
N
S svstem has two types of inference rules: inter-situational rules which specifv attributes that a new
A
situation will have after application of a particular operator, and intra-situational rules which can
': embellish BAGGER's knowledge of a situation by specifying additional conclusions that can be
Y drawn within that situation.
v
Each inter-situational inference rule specifies knowledge about one particular operator.
‘W : . L
N However, operators are not represented by exactly one inference rule. A major inference rule
(
::l specifies most of the relevant problem-solving information about an operator. But it is augmented
'!' ¢
'o: by many lesser inference rules which capture the operator's frame axioms and other facts about a ‘
\J
new situation. This paradigm contrasts with the standard STRIPS (Fikes and Nilsson. 1971)
“f
i {
‘. formalism.? The inference rules of a STRIPS-like system are in a one-to-one correspondence with
» }
L]
: ? Fahlman (1974) and Fikes (1975) augmented the standard STRIPS mode! by allowing a distinction between
primary and secondary relationships. Primary relationships are asserted directly by operators while secon- s
darv relationships are deduced from the primary ones as needed. While this serves the same purpose as
.. BAGGER's intra-situational rules, multiple inter-situational rules for an operator are not allowed ("Valdinyer,
l‘
. I
(LY 4
\
LN
[Y
qe
K
)

4,
'y
;rr" ¥ Y PO AW A AT s
K “" ‘.M Y, '."!.“-...") "s."\." 0." " T ,@;,“ u,o, Wy “'v \ 'r\ m KeREh \" - ‘- ﬂ- \- *.'I

s NAK MR A Y X AN

R xS T T

aT

"9

DX

B P W

ll

Acquiring General Iterative Concepts

the system’s operators. Each inference rule fully specifies an operator’'s add- and delete-lists.
These lists provide all of the changes needed 1o transform the current situation into the new
situation. Any state not mentioned in an add- or delete-list is assumed to persist across the
operator's application. Thus, the new situation is completely determined by the inference rule. In
the BAGGER system this is not the case. Many separate inference rules are used to fully

characterize the effect of an operator.

The advantage of the STRIPS approach is that the system can always be assured that it has
represented all that there is to know about a new situation. However, this can also be a
disadvantage. A STRIPS-like system must always muddle through all there is to know about a
situation. no matter how irrelevant many facts may be to the current problem. Conversely. the
advantages of BAGGER's approach are that the inference rules are far less complex and therefore
more manageable. the system’s attention focussing is easier because it does not bog down in
situations made overly-complex by many irrelevant facts. and a programmer can more easily write
and update knowledge about operators. Furthermore. STRIPS-style operators do not allow

disjunctive or conditional effects in their add- or delete-lists.

A potential disadvantage of BAGGER's approach is that to completely represent the effects of
applving an operator in a particular situation, the system must retrieve all of the relevant inference
rules. However. this is not a task that arises in BAGGER's problem solving. Indeed. there has been
no attempt to guarantee the completeness of the system's inferential abilities. This means that

there may be characteristics of a situation which BAGGER can represent but cannot itself infer.

2.2. Some Sample Problems

One problem solution analyzed by BAGGER is shown in figure 1. The goal is to place a
properly-supported block so that its center is above the dotted line and within the horizontal
confines of the line. BAGGER is provided low-level domain knowledge about blocks. including how
to transfer a single block from one location to another and how to calculate its new horizontal and
vertical position. Briefly, to move a block it must have nothing on it and there must be free space
at which to place it. The system produces a situation calculus proof validating the actions shown in

figure 1. in which three blocks must be moved to build the tower.

1977).

*'4. > '-‘.' N e YN Q,-.’x‘ \\."'J"\}w“' ‘\-,,h' O ‘\ Y ,'\" vy
»

%M, BB B A b Ko Nl Kol Mt 2 bbb Bl O o 2 b B 0- »9 1.9°9,59,

A A A A4

- W ETTFUVEFETETFP EEEFIIF FE T E AT AR TN N TS PO TGS Ty S Twr e 2wt

Acquiring General Iterative Concepts ’ 6 |

Situation,
B
A
L ¢ |
l tablel | table2 |
Situation1
B
I A
[tablel | B table2 |
Situation,
B
| tablel] I table2]
Situation,
... [-C]
B
A
{ tablel | [table2]

Figure 1. Constructing a Three-Block Tower

If a standard explanation-based generalization algorithm is applied to the resulting proof. a
plan for moving three blocks will result. They need not be these same three blocks. any three
distinct ones will suffice. Nor is it is necessary that the first block moved be placed on a table, any
flat. clear surface is acceptable. Finally. the height of the tower need not be the same as that in the
specific example. Given appropriately sized blocks, towers of anyv height can be constructed. Many
characteristics of the problem are generalized. However. the fact that exactly three blocks are

moved would remain.

If one considers the universe of all possible towers, as shown in figure 2. only a small fraction

of them would be captured by the acquired rule. Separate rules would need to be learned for

S R R R S N R i

U
o i)
ERRRUNGAAERRN

ﬂ

Ty P B R

D &) o2 8

NS

G

R O RO ¥ A

5

Y WYV ETY IEYY Edal gl dal uiad daft aad 2af S bl Bl b Saf Sl Lol Bl Mal Lof Bel Sad Had Mol Salh So8 ol Bal Aol S .8 |

Acquiring General [terative Concepts 7

Figure 2. Universes of Constructible Towers

towers containing two blocks, five blocks, etc. What is desired is the acquisition of a rule that

describes how towers containing any number of blocks can be constructed.

By analyzing the proof of the construction of the three-block tower., BAGGER acquires a
general plan for building towers by stacking arbitrary numbers of blocks, as illustrated in figure 3.
This new plan incorporates an indefinite number of applications of the previously known plan for

moving a single block.

In another example, the system observes three blocks being removed from a stack in order to
satisfy the goal of having a specific block be clear. Extending the explanation of these actions
produces a plan for unstacking any number of blocks in order to clear a block within the stack.

Figure 4 illustrates this general plan. The plan includes the system’s realization that the last

Figure 3. A General Plan for Constructing Towers

¥
il

L
Yo

Ny " A m T At At AT AT A n Y u" w AR LR L PR R T O LR PN
.:::.h:;:t:.:\.. e e T e e e b N T R A
. ¥ . ¥, o Ll » & B 5 &) Ll D) D s’ u o' o 3 i) 3

e bl o A iae ala al sag o8 g el sl e a-d Mg atll il o4 o a da Bat lol Mol B ol o gt e d A dta doa gta Al Bl Al A THTWN W W

Acquiring General Iterative Concepts 8

L)

& _.zlﬁ

Figure 4. A General Plan for Unstacking Towers

unstacked block is currently clear and thus makes a suitable destination 1o place the next block to
be moved. This knowledge is incorporated into the plan and no problem solving need be performed

finding destinations once the first free location is found.

Unlike many other block-manipulation examples. in these examples it is not assumed that
blocks can support only one other block. This means that moving a block does not necessarily clear
its supporting block. Another concept learned by BAGGER, by observing two blocks being moved
from on 1op another, is a general plan for clearing an object directly supporting any number of

clear blocks. This plan is illustrated in figure S.

a

[ﬂr:L--‘ ‘

| { X _
— I

Figure 5. A General Plan for Clearing Objects

sonlng

The domain of digital circuit design has also been investigated. By observing the repeated
application of DeMorgan’s law to implement two cascaded AND gates using OR and NOT gates,
BAGGER produces a general version of DeMorgan’s law which can be used to implement N cascaded
AND gates with N OR and one NOT gate. This example, which does not use situation calculus, is

shown in figure 6.

o T R

o Ca V¥ Ca"a Wy W W Ld
a-(‘: ek S ANV .-*‘f-":n\"a

AL DAL B

’

[Y=

“

L4

AR

.

T

[
T

419

o
Lf A
o

e]

TEPTVVITY

Acquiring General Iterative Concepts 9
Specific Example General Concept
% | imglemgr implem
fg h fg h
abcdeyz abec :i-y_z

Figure 6. A Circuit Design Example

The next section presents the BAGGER generalization algorithm. Following that, there is a
detailed presentation of the tower-building example, including the full proof tree and the acquired
rule. The inference rules used in this example are described in the appendix. Complete details on
the other examples. including the complete set of initial inference rules. the situation calculus

proofs. and the acquired inference rules, can be found in (Shavlik, 1988).
3. GENERALIZATION IN BAGGER

Generalizing number, like more traditional generalization in EBL, results in the acquisition of
a new inference rule. The difference is that the sort of rule that results from generalizing number
describes the world after an indefinite number of world changes or other inferences have been
made. Each such rule subsumes a potentially infinite class of standard situation calculus rules.
Thus. with such rules the storage efficiency can be dramatically improved. the expressive power of
the system is increased. and. as shown in section 5, the system’s performance efficiency can also be

higher than without these rules. This section describes how BAGGER generalizes number.
3.1. Sequential Rules

Like its standard inference rules. number-generalized rules in the BAGGER system are usually
represented in situational calculus. In the previous section, two types of BAGGER inference rules
are discussed: intra-situational rules and inter-situational rules. To define number-generalized
rules. the inter-situational rules are further divided into two categories: simple inter-situational
rules and sequential inter-situational rules (or simply sequential rules). Sequential rules apply a

variable number of operators. Thus. within each application of a sequential rule many

intermediate situations may be generated. The actual number of intermediate situations depends

F) - .
»

2
p

-

'

- e

M
L o

~ LAl

»

2]

L

Lo
L

.'l

1or.2”
ety

A A

~

AR

¥
!
s

"_'l

X5

<

o

":'O

v

Y
RN

VAN

LY

Py o

R T SRS
Dol il
ey

4

5@

»
voroe Qg

>

- - 3 o ol
- - N
-~ A ‘ ?’ .
= 0

L]

A TS,

i

b

th

.lg&

.,5 h)

¥

P g

=

»a a

=

2

4

W

it

L ca

\\“

al

P
o

Acquiring General Iterative Concepts 10

on the complexity of the problem to be solved. The rule for building towers is an example of a
sequential rule. This rule is able to construct towers of any number of blocks in order 1o achieve a
specified goal height. The rule itself decides how many blocks are to be used and selects which

blocks to use from among those present in the current situation.

Sequential rules, like their simple inter-situational counterparts. have an antecedent and a
consequent. Also. like the simple versions, if the antecedent is satisfied. the consequent specifies
properties of the resulting situation. Unlike the simple rules. the resulting situation can be
separated from the initial situation by many operator applications and intermediate situations. For
example. 10 build a tower. many block-moving operations must be performed. It is an impertant
feature of sequential rules that no planning need be done in applying the intermediate operators.
That is. if the antecedent of a sequential rule is satisfied. its entire sequence of operators can be
applied without the need for individually testing or planning for the preconditions. The
preconditions of each operator are guaranteed to be true by the construction of the sequential rule
itself. Thus, the consequent of a sequential rule can immediately assert properties which must be
true in the final situation. A sequential rule behaves much as a STRIPS-like macro-operator. It is
termed a sequential rule and not a macro-operator because it is. in fact, a situational calculus rule

and not an operator. It has a situation variable. does not specify 40D and DELETE lists, etc.

Sequential rules can be much more efficient than simply chaining together simple constituents.
This improved efficiency is derived from three sources: 1) collecting together antecedents so that
redundant and subsumed operator preconditions are eliminated. 2) heuristically ordering the
antecedents, and. especially. 3) eliminating antecedents that test operator preconditions which. due

1o the structure of the rule. are known to be satisfied.

3.2. Representing Sequential Knowledge

A representational shift is crucial to this article’s solution to the generalization to .V problem.
While objects in the world are represented within simple inference rules directly as predicate
calculus variables, this is not possible for BAGGER's sequential rules. A standard operator interacts
with a known number of objects. Usually, this number is small. The rule representing the
operator that moves blocks. for example, might take as arguments the block to be moved and the
new location where it is to be placed. A simple inter-situational rule for this operator might
speci{y that in the resulting situation. the block represented by the first argument is at the location

specified by the second. This rule represents exactly one application of the move operator. There

e - R T T e TR L, . J SRR U SR Y ..
N A AT NN D A S A P N A A A S
. SO R N, oyt

"t NSy A TN T T AT S

4

r
Fe

e Y

20 {4 ot

PRV]

MO

1,
v

.
.
- "t

-
voae
LTS
(BRI IR

Ky

S \,‘l

P,
TV AR N

- ". "A '.l ‘.I

RALA

<

2

&

5

A
>

- o
. 4

ARNERENET

5%

5

=B

v % D
P

L

Kot

R Y Y WS WY M MY WY VWV W TR LW Ty YV TR D D 2 e e e A B T e A S e

Acquiring General Iterative Concepts 11

are always two arguments. They can be conveniently represented by predicate calculus variables.
That is. each of the world objects with which a simple operator interacts can be uniquely named
with a predicate calculus variable. Sequential rules cannot uniquely name each of the important
world objects. A rule for building towers must be capable of including an arbitrary number of
blocks. The uninstantiated rule cannot know whether it is to be applied next to build a tower of
five blocks. seven blocks, or 24 blocks. Since the individual blocks can no longer be named by
unique variables within the rule. a shift is necessary to a scheme that can represent aggregations of
world objects. Such a representational shift, similar to Weld's (1986), makes explicit attributes
that are only implicitly present in the example. Thus, it shares many characteristics of

constructive induction (Michalski. 1983; Rendell. 1985).

A new object called an RIS (for Rule Instantiation Sequence) is introduced to represent
arbitrarily large aggregations of world objects. A sequential rule works directly with one of these
generalized structures so that it need not individually name every world object with which it
interacts. A sequential rule’'s R/S is constructed in the course of satisfving its antecedent. Once
this is done. the R/S embodies all of the constraints required for the successive application of the

sequence of operators that make up the plan.

3.3. The BAGGER Algorithm

Figure 7 schematically presents how BAGGER generalizes the structure of explanations. On
the left is the explanation of a solution to a specific problem. In it, some inference rule is
repeatedly applied a fixed number of times. In the generalized explanation. the number of
applications of the rule is unconstrained. In addition. the properties that must hold in order 1o
satisfyv each application’s preconditions. and 10 meet the antecedents in the goal. are expressed in
terms of the initial situation. This means that portions of the explanation not directly involved in
the chain of rule applications must also be expressed in terms of the initial state. When the initial
situation has the necessary properties. the results of the new rule can be immediately determined.

without reasoning about any of the intermediate situations.

- LR 0 U R N Lt Nl o A TN S
e B e I. o ,\._J** '&')"\j. NG

TN ITFUFIrgI " g UiIw ""TFirTl"wFOowriIrfyTTF U T TVITWITET77TEFL T Uy L BFINMETLETE @ FITETWITTFOTE WBWW SR~ =W

Acquiring General Iterative Concepts 12

b Y

applic, applic,

applic, applic; Y Y

.1"

applic, applic,,

goal goal

Figure 7. Generalizing the Structure of an Explanation

The generalization algorithm appears in figure 8. This algorithm is expressed in a pseudo-
code, while the actual implementation is written in Lisp. The remainder of this section elaborates

the pseudo-code. In the algorithm back arrows (=) indicate value assignment. The construct
for each element in set do staternent

means that element is successively bound to each member of ser, following which starement is
evaluated. The functions AddDis junct and AddCon junct alter their first argument. If either of
AddCon junct 's arguments is fail. its answer is fail. AddRule places the new rule in the database

of acquired rules.

The algorithm begins its analysis of a specific solution at the goal node. It then traces
backward, looking for repeated rule applications. To be a candidate. some consequent of one
instantiation of a rule must support the satisfication of an antecedent of another instantiation.
These repeated applications need not directly connect — there can be intervening inference rules.
Once a candidate is found. all the inter-connected instantiations of the underlying general rule are

collected.

The general rule repeatedly applied is called a focus rule. After a focus rule is found,
BAGGER ascertains how an arbitrary number of instantiations of this rule and any intervening
rules can be concatenated together. This indefinite-length collection of rules is conceptually merged
into the explanation. replacing the specific-length collection, and a new rule is produced from the

augmented explanation.

A

R

R i dhde bbb ol S el B e i i L A Bl MR Bl Sl b ol el il Bl Bl B R B Al b ab A A% G il abl s A ath ah ath o1h o8 ats |

Acquiring General Iterative Concepts 13

procedure BuildNewBAGGERrule (goalNode)

focusNodes = CollectFocusRuleApplications(goalNode)
antecedentslnitial ~— BuildInitial Antecedents(Earliest(focusNodes))
antecedentsintermediate ~ ¢

tor each focusNode in focusNodes do

answer ~ ViewAsArbitrary Applic(focusNode, focusNodes)

-
=

if answer # fail then AddDisjunct(antecedentsintermediate, answer)

-

25

antecedentsFinal «— View AsArbitrary Applic(goalNode, focusNodes))

v

consequents — CollectGoalTerms(goalNode)

if antecedentslniermediate = ¢ A antecedentsFinal = fail

o |

then AddRule(antecedentslnitial. antecedentsIntermediate. antecedentsFinal, consequents)

A

procedure ViewAsArbitrary Applic (node, focusNodes)

result — ¢

W

for each antecedent in Antecedents{node) do

if Axiom?(antecedent) then true

L

else if SupportedByEarlierNode?(antecedent, focusNodes) then

AddConjunct(result, CollectNecessaryEqualities(antecedent, Supporter(antecedent)))

X

else if SituationIndependent?(antecedent) then AddConjunct(result. antecedent)

else if SupportedByPartiallyUnwindableRule?(antecedent) then

]

AddConjunct(result. CollectResultsOf PartiallyUnwinding(antiecedent))

AddConjunct(result, View AsArbitrary Applic(PartiallyUnwind(antecedent). focusNodes))

b

else if SupportedByUnwindableRule?(antecedent) then
AddConjunct(result. CollectResultsOf Unwinding(antecedent))
else if SupportedByRuleConsequent?(antecedent) then

AddConjunct(result. CollectNecessaryEqualities(antecedent. Supporter(antecedent)))

235 2N

AddConjunct(result, View AsArbitrary Applic(SupportingRule(antecedent). focusNodes))
else return fail

o return result

Figure 8. The BAGGER Generalization Algorithm

A specific solution contains several instantiations of the general rule chosen as the focus rule.

OACONY,) X0
R GRRRY

C‘. L '. I'. g7 & 0‘ " LA X
Ml O “&,“C."i."l.‘,‘.‘!‘.‘,),

»

LY ——— ey TT T R T ST TRYT YT YT T TR WY WY TN TN YT R T T T TR T TR T EE T W T wtY mTTWETY WY hdhidi i i i |

0
Acquiring General [terative Concepts 14
.;".'
A
:.‘- Each of these applications of the rule addresses the need of satisfying the rule’s antecedents.
: possibly in different wavs. For example. when clearing an object. the blocks moved can be placed
. in several qualitatively different types of locations. The moved block can be placed on a table
":E‘ (assuming the domain model specifies that tables always have room). it can be placed on a block
""-: \ moved in a previous step, or it can be placed on a block that was originally clear.
! ')
;"::;' BAGGER analyvzes all applications of the general focus rule that appear in the specific example.
i:.: ; When several instantiations of the focus rule provide sufficient information for different
E§." generalizations. BAGGER collects the preconditions for satisfying the antecedents of each in a
) disjunction of conjunctions (one conjunct for each acceptable instantiation). Common terms are
:_:: faciored out of the disjunction. If none of the instantiations of the focus rule provide sufficient
:::': information for generalizing the structure of the explanation. no new rule is learned by BAGGER.
s
¥ : Three classes of terms must be collected to construct the antecedents of a new rule. First. the
:. antecedents of the initial rule application in the arbitrary length sequence of rule applications must
'..-":','-,_ be satisfied. To do this. the antecedents of the focus rule are used. Second. the preconditions
E'K imposed by chaining together an arbitrary number of rule applications must be collected. These are
: derived by analyzing each inter-connected instantiation of the focus rule in the sample proof.
:::;'_’:: Those applications that provide enough information to be viewed as the arbitrary irh application
"::E produce this second class of preconditions. Third. the preconditions from the rest of the
.‘:.' explanation must be collected. This determines the constraints on the final applications of the focus
,..).'. rule.
2 o |
:::' In order to package a sequence of rule applications into a single sequential rule, the
E:-d preconditions that must be satisfied at each of the A rule applications must be collected and
e combined. The preconditions for applying the resulting exiended rule must be specifiable in terms
-,‘:. ¢ of the initial state, and nor in terms of intermediate states. This insures, given that the necessary
~‘_"c_ conditions are satisfied in the initial state, a plan represented in a sequential rule will run to
08 completion without further problem solving, regardless of the number of intervening states
: necessary. For example, there is no possibility that a plan will lead to moving N-2 blocks and then
E f:-‘: get stuck. If the preconditions for the i:x rule application were expressed in terms of the result of
X ?.:5 the (i—1)h application. each of the N rule applications would have 1o be considered in turn to see if
b the preconditions of the next are satisfied. This i1s not acceptable. In the ipproach taken. extra
::‘. work during generalization and a possible loss of generality are traded off for a rule whose
M)
ey
R

'0-

LR NS L S
VR CEMN

R P L
N NI

P
.

|

2% M X’y Gl

a
-

j®

fo

"‘ ﬁ) Vo " v) Ay

—T—— haanbdi adudh oLl o o Ll all okl i olf ol A0l alh and all Stk a il o A A Al A e s g o Lo i .0 daod doh |

Acquiring General Iterative Concepts 15

preconditions are easier to check.

When a focus rule is concatenated an arbitrary number of times, variables need to be chosen
for each rule application. The RIS. a sequence of p-dimensional vectors, is used to represent this

information. The general form of the RIS is:

<Vl,l-~- VLP>.<V2'1....,V2.P>... y <Vp g \Y > (1)

In the tower-building example of figure 1. initially p =3: the current situation. the object to be

moved, and the object upon which the moved object will be placed.

Depending on the rule used. the choice of elements for this sequence may be constrained. For
example, certain elements may have to possess various properties, specific relations may have to
hold among various elements, some elements may be constrained to be equal to or unequal to other
elements. and some elements may be functions of other elements. Often choosing the values of the
components of one vector, determines the values of components of subsequent vectors. For
instance, when building a tower. choosing the block to be moved in stepi also determines the

location to place the block to be moved in step i+/.

To determine the preconditions in terms of the initial state, each of the focus rule
instantiations appearing in the specific proof is viewed as an arbitrary (or irh) application of the
underlying rule. The antecedents of this rule are analyzed as to what must be true of the initial
state in order that it is guaranteed the ich collection of antecedents are satisfied when needed. This
involves analyzing the proof tree. considering how each antecedent is proved. An augmented
version of a standard explanation-based generalization algorithm (Moonev and Bennett. 1986) is
used to determine which variables in this portion of the proof tree are constrained in terms of other

variables.

Once this is done, the variables are expressed as components of the p-dimensional vectors
described above. and the svstem ascertains what must be true of this sequence of vectors so that
each antecedent is satisfied when necessary. All antecedents of the chosen instantiation of the focus

rule must be of one of the following types for generalizing to .V to be possible:

(1) The antecedent mayv be an cxiom. Since an axiom always holds. it need not appear as a

precondition in the finai rule.

AOVITON « M ™ N o%‘rn' h

.99, 2

.‘.' A G RSl LT LY. T 3 | 4 I!.l LI o
-*a-(‘ s‘.\(:. " e -\. *\\.\.\"'\\ \\ -\J,.x-._;.?(

!

-

-~
AL

7L I ALY

.-

v

S

!

Sy

- o

PN T WA A LT

. (A A
'n"\\\\‘-‘-

lll.l.

4,

TSR T PRT O T r T E T E T BT RS TR WU WU WL Y WY 8080 W A Y et e T T e T e T A e T T e e R R R R R R

Acquiring General Iterative Concepts 16

(2) The antecedent may be supported by a consequent of an earlier application of the focus rule.
Terms of this type place inter-vector constraints on the sequence of p-dimensional vectors.

These constraints are computed by unifying the general versions of the two terms.
(3) The antecedent may be situation-independent. Terms of this type are unaffected by actions.

(4) The antecedent may be supported by an “‘unwindable” or partially “unwindable” rule. When
this happens. the antecedent is unwound to an arbitrary earlier state and all of the
preconditions necessary to insure that the antecedent holds when needed are collected. A
partially unwindable rule goes back an indefinite number of situations. from which the
algorithm continues recursively. If no other inference rules are in the support of the
unwindable rule. then it is unwound all the way to the initial state. The process of
unwinding is further elaborated later. It. too, may place inter-vector constraints on the

sequence of p-dimensional vectors.

(5) The antecedent is supported by other terms that are satisfied in one of the above ways. When
traversing backwards across a supported antecedent. the system collects any inter-vector
constraints produced by unifying the general version of the antecedent with the general

version of the consequent that supports it.

Notice that antecedents are considered satisfied when they can be expressed in terms of the
initial state. and not when a leaf of the proof tree is reached. Conceivably. to satisfy these
antecedents in the initial state could require a large number of inference rules. If that is the case. it
may be better to trace backwards through these rules until more operational terms are encountered.
This operarionality ‘generality trade-off (DeJong and Mooney. 1986; Keller, 1987; Mitchell. Keller,
and Kedar-Cabelli. 1986; Segre. 1987; Shavlik. DeJong. and Ross. 1987) is a2 major issue in
explanation-based learning. but will not be discussed further here. Usually the cost of increased
operationality is more iimited applicability. An empirical analysis of the effect of this trade-off in

the BAGGER system appears in (Shavlik, 1958).

A second point to notice is that not all proof subtrees will terminate :n1 one of the above ways.

If this is the case. this application of the focus rule cannot be viewed as an arbitrary i

application.?

’ An alternative approach to this would be to have the svstem search through its collection of unwindable
rules and incorporate a reievant one into the proot structure. To study the limits of this article’s approach to

o e 2 Ad i aol fad A e o e ab- gt Bia Sla dhbe s d A A Al Al Mat e 4 o ans gav Sa- @ oth bl acl ol a'e B Ah Nab (o SolSal Sl ARG SRR R A B O Bl AR AN A i i

Acquiring General Iterative Concepts 17

The possibility that a specific solution does not provide enough information to generalize to N

is an important point in explanation-based approaches to generalizing number. A concept involving
an arbitrary number of substructures may involve an arbitrary number of substanuially different

problems. Anyv specific solution will only have addressed a finite number of these sub-problems.

P

Due to fortuitous circumstances in the example some of the potential problems may not have
arisen. To generalize to N, a system must recognize all the problems that exist in the general

concept and. by analyzing the specific solution, surmount them. Inference rules of a certain form

k£ J

(described later) elegantly support this task in the BAGGER system. They allow the system to

reason backwards through an arbitrary number of actions.

4 =ns

Figure 9 illustrates how consequents of an earlier application of a focus rule can satisfy some

T«
v

antecedents of a later instantiation. This figure contains a portion of the proof for the tower-

building example. (The full proof tree is presented and discussed later.) Portions of two

L Oy

transfer;_,

/L\-

On(?xi_l.?yi__l.Do(Transfer(?xi_l,"yi_l),?Si_l)) Clear(?xi__l. Do('Transfer('?xi-l, "yl"l). ”Sl__l))

e

i AchievableState(Do(Transfer(?X;_;. ?¥;—-1). ?sy—))
F FlatTop(?z) Clear(?z, 7s)

[

e
:.{ \‘/
Tt

FresSpace(?z, ?s)

’ |

. AchievableState(?s;) FreeSpace(?y;. 7s;) /
" i 7%: . 78

<. x; = ?y; Lifiable(?x;. 7s;)

v

g2
) transfer;

‘.

“ Figure 9. Satisfying Antecedents by Previous Consequents

"

|

“Q

:\' generalizing to N, 1t 1s required that ail necessary information be present in the explanation: no problem-
\I

soiving search is performed during peneralization. Another approach would be 10 assume the prohiem solver
could overcome this problem at rule application time. This second technique. however., would eliminate the

e property that a learned plan will alwavs run to completion whenever 1ts preconditions are satished :n the
initial state.

N T U U N WL G SR
AR AL N SN Ny

"ol v " ol o= adll ol ol - ol akd 'R ol o LS PR oM aPh AR AR AR LA . R Rl Bl |

v
L
> Acquiring General Iterative Concepts 18
P
N consecutive transfers are shown. All variables are universally quantified. Arrows run from the
o
A antecedents of a rule to its consequents. Double-headed arrows represent terms that are equated in
°“ the specific explanation. The generalization algorithm enforces the unification of these paired terms.
N
¥
o leading to the collection of equality constraints.
(~"
B\ There are four antecedents of a transfer. To define a transfer. the block moved (x), the object
- on which it is placed (y). and the current state (s) must be specified. and the constraints among
,-.‘\‘ these variables must be satisfied. One antecedent. the one requiring a block not be placed on top of
A
:: itself. 1s type 3 — it is situation-independent. The next two antecedents are tvpe 2. Two of the
s
consequents of the (i—7kh transfer are used to satisfy these antecedents of the ira transfer. During
: transfer, _,. in state s, _; object x,_; is moved on to object ¥, ;. The consequents of this transfer are
." 1 -1 =1
» j that a new state is produced, the object moved is clear in the new state. and x,_; is on v,_; in the
s :
i resulting state.
. e
W The state that results from ¢ransfer,_, satisfies the second antecedent of transfer,. Unifying
N these terms defines 5, in terms of the previous variables in the R/S.
' Another antecedent requires that. in state s, , there be space on object ¥, to put block x,. This
1
‘e antecedent is type 3. and. hence. the algorithm traverses backwards through the rule that supports
o it. An inference rule specifies that a clear object with a flat top has free space. The clearness of
JI
‘s x,_; after rransfer, _; is used. Unifying this collection of terms leads. in addition to the redundant
s . A . .
definition of s, . to the equating of y, with = and x, _;. This means that the previously moved block
:, always provides a clear spot to place the current block. which leads to the construction of a tower.
K The fourth antecedent. that x, be liftable. is also tvpe 5. A rule (not shown) states that an
o
e object 1s liftable if 1t is a clear block. Block x, is determined to be clear because it is clear in the
e . 4 . . .
initial state and nothing has been placed upon it. Tracing backwards from the liftable term leads
A
- to several situation-independent terms and the term Supports(’x,.é.?s,). Although this term
<
- contains a situation variable, it is satisfied by an “unwindable rule.” and is tvpe 4.
» Equation 2 presents the form required for a rule to be unwindable. The consequent must
LN . .
AN match one of the antecedents of the rule. Hence. the rule can be applied recursivelv. This feature
\'
» is used to "unwind’ the term from the itk stale to an earlier state, often the imtial state.
L .
. (x:casionally there can be several unwindable rules in a support path. For example. a block might
9
. suppert another block during some number of transfers, be cleared. remain clear during ancther
)
4
‘A
D
L
e
z
Y]
’

L
S o, f‘.-l‘ J'ﬁf

I

Yo

z.rfqv_ VP P .,q.__.. e .'._.\,,\ TN AT AR m-\r \\\.\»
o ; # v J'fﬁf;m
,', Jl' Sl (N > A .\n&,.\-

r——rmwmmmmwmmmmmmv‘

g Acquiring Genera) Iterative Concepts 19

)

o sequence of transfers. and finally be added to a tower. The variables in the rule are divided into

‘ three groups. First, there are the x variables. These appear unchanged in both the consequent’s
term P and the antecedent’'s term P. Second, there are the v variables which differ in the two P's

- and the z variables that only appear in the antecedents. Finally, there is the state variable (s).

;-'f There can be additional requirements of the x., y. and z variables (via predicate Q). however, these

! requirements cannot depend on a state variable.

v

Applying equation 2 recursively produces equation 3. This rule determines the requirements

on the earlier state so that the desired term can be guaranteed in state i . Except for the definition

h o g

of the next state. none of the antecedents depends on the intermediale states. Notice that a

s
-

collection of y and z variables must be specified. Any of these variables not already contained in

the RIS are added to it. Hence. the RIS is also used to store the results of intermediate

computations. Since the predicate Q does not depend on the situation, it can be evaluated in the

N>

initial state.

B
. Plx, ;. -ox pe¥eop1 o Yemrae Si—1)
. and

Q("‘z.l' SEERESITTR R 1 FIEEIRIR S5 ST FHS EICIII SRR 6 PR -:z.w)
. and
?':- s;=Dolx X Y11 Vi1 RINE :x,w'sx—l)
- —_—
u P(x, o Yot Yy 5,) (2)
P
)
o
&' P(xl X(,'L'-\' 1rs e)'I, V'Sl) and 0< <
o> and
- ¢

Vke;+1 . !

"&; Q(l 1 'x_“._\'k_j.l. \1\,/ ve Vi 1y Yiu :;‘ 1 :I\ w)
ﬁ and

s¢ = Dolx, SBVER Vi w i1 Zim) e Sk-1)
:’; —
N4 P(x, Vo N s) (3)
.
‘l
[
-

ta o acd B o 4 al B Nag a8 Bad m . s val g AloAbo e Ste S A A A B BA U Al dad Sl e AF S~ e ol ol et Sl A Bl Eal Lall el S S
a’l" T
"

)

v.:.'

— Acquiring General Iterative Concepts 20

\ﬂ'

o
o]

) :j The requirements on the predicate Q are actually somewhat less restrictive. Rather than
b requiring this predicate to be situation-independent, all that is necessary is that anv term
0 containing a situation argument be supported (possibly indirectly) by an application of a focus
+ %

w rule. The important characteristic is that the satisfication of the predicate Q can be specified in
A
.-,G terms of the initial situation only. Separately unwinding a predicate Q while in the midst of
’

1 . : .

{ unwinding a predicate P is not possible with the current algorithm. and how this can be

o accomplished is an open research issue.

..

I'.:'

f- Frame axioms often satisfy the form of equation 2. Figure 10 shows one way to satisfy the

4
N need to have a clear object at the i:x step. Assume the left-hand side of figure 10 is a portion of
'ﬁ. some proof. This explanation says block x, is clear in state 5s; because it is clear in state s,_; and
AN
-, . . B .

TN the block moved in transfer; _, is not placed upon x;. Unwinding this rule leads to the result that
“Ca

o) . . .

W) block x; will be clear in state 5, if it is clear in state s, and x, is never used as the new support
Py
g block in any of the intervening transfers.

P2 -'J‘:

{:: To classify an instantiation of a rule as being unwindable. the rule must be applied at least
o)

:'.; twice successively. This heuristic prevents generalizations that are likely to be spurious. Just like
oo
! when looking for multiple applications of the focus rule, multiple applications are required for
:::' unwindable rules. The intent of this is to increase the likelihood that a generalization is being made
) . .

.:~' that will be prove useful in the future. For example. imagine some rule represents withdrawing
' L]

Wy some money from a bank and also imagine this rule is of the form of equation.2. Assume that in
0,

) state 5. John withdraws $500 10 buy a television, while in states 1-4. the amount of money he has
> in the bank is unaffected. While it is correct to generalize this plan to include any number of trips
‘.r.‘
< to the bank in order to get sufficient moneyv for a purchase. it does not seem proper to do so.
< A Portion of the Explanation Unwound Subgraph
:«.‘ Clear(?z.7s) 7z =?y Clear(?x;. 7s,) 2x; = ?y,

": y Y

LY
o

N Clear(?z. Do(Transfer(?x, 2y), ?s)) Clear(?x;. ?s,) ?x; = 7y,

.- \‘//

‘-’.

L , .

[} -., .

-

s Clear(?x,. 7s,) Clear(?x;. 7s,)

r,

N
o. Figure 10. Unwinding a Rule

Y

~

)

v
S
o
Ny
.

¢ .- . [P -

¥ T e AN R R R o, N R N AN T S A A S RN NS VRN AT WAL

\ P S A T S T AT G A A SRS A S A S Ry]

Acquiring General Iterative Concepts 21

== 1L

-
[

Rather, the generalization should be to a single trip to the bank at any time. Frame axioms are

exceptions to this constraint - they only need to be applied once to be considered unwindable. Since

frame axioms only specify what remains unchanged. there is no risk in assuming an arbitrary

number of successive applications.

P

Once the repeated rule portion of the extended rule is determined. the rest of the explanation

is incorporated into the final result. This is accomplished in the same manner as the way

=8

antecedents are satisfied in the repeated rule portion. The only difference is that the focus rule is

now viewed as the N:a rule application. As before. antecedents must be of one of the five specified

LA

types. If all the terms in the goal cannot be satisfied in the arbitrary N:h state. no rule is learned.

The consequents of the final rule are constructed by collecting those generalized final

ExL)

consequents of the explanation that directly support the goal.

nz

Even though all the antecedents of a sequential BAGGER rule are evaluated in the initial state,

substantial time can be spent finding satisfactory bindings for the variables in the rule.

-
':' Simplifving the antecedents of a rule acquired using EBL can increase the efficiency of the rule
- (Minton. Carbonell. Etzioni, Knoblock. and Kuokka, 1987; Prieditis and Mostow: 1987). After a
i rule is constructed by the BAGGER generalization algorithm, duplicate antecedents are removed and
; the remainder are rearranged by the system in an attempt to speed-up the process of satisfving the
ﬁ rule. This involves several processes. Heuristics are used to estimate whether is better to construct
sequences from the first vector forward or from the last vector backward. Terms not effected by
! the intermediate antecedent are moved so that they are tested as soon as possible. Terms involving
. arithmetic are placed so that all their arguments are bound when they are evaluated. Finally,
within each grouping, antecedents are arranged so that terms involving the same variable are near
each other.
~ The next section discusses the sequential-rule produced by this algorithm when applied to the
» problem of building a tower.

4. DETAILS OF THE STACKING EXAMPLE

. This section presents the details of one of BAGGER's sequential rules. The proof that explains
- the tower-building actions of figure 1 appears in figure 11. This graph is produced by the BAGGER
\l svstem. however nodes have been rearranged by hand for the sake of readability. Since the
w situation arguments are quite lengthyv. they are abbreviated and a Key appears in the figure.
by
-
-~

»

N i % W \ J-
' 4.‘4.‘ mﬁ‘sﬁuﬁulfl‘m-x.,.mn

Acquiring General Iterative Concepts

BOX(A) B> A
Supports(A,$,50) | Supports(table2,¢,s0) Table{table2)

Clear{A.s0) Block(A)

\/ Clear(ta{w)ﬂ/at'roé(ublcz)
&

}
A # table2 & NotMember{A,{B})

Liftable(A,s0) C # table2 S w(C.{B)
FreeSpace(ublez,sO)Suppor (B 50) uppor ts(C,{B},s0

B » table2 NotMember{(A,$) 3

Box(A) / Supports(C,{B},s1)
S l.s(B, ! l) / '
On(A.umC}r(A.sl) l upports(B.$.s Member(B,{B})/

1atT Box(B) ‘RemoveFromBag(B,{B),¢)
FlatTopla) Clear{B;s1) | C» A

v
A # B NotMember{(A ¢)

AchievableState(

Height(A,60)

AchievableState(s1) & wk(n) B
/ A # table2
FreeSpace(A,s1) ‘/& YM“"WO +25)
Bxa Lif tabie(B,s1) f

Box(C) SupportsiC.{},s2)

& Box(B)

Block(C) Clear(C.sZ) B A
on(B-532) / YpodA.SS.sl)
Clear(B,s2) FlatTop(B) Height(B,50) 135 = (50 + 85)
\/ &

4
AchievableState(s2) &

v
C»B FreeSpace(B,s2) Liftable(C,s2)
2 Xpos(tableZ 650s0) CxB YP““’ 135.82)
Height(C,35) 170 = (35 + 135)
On(CB.s3) Clear(C,s3) XP“(A'GSO'SI)
Xpos(B,650,52)
AchievableState(s3) 650 >
X pos(C,650,53) 650 < ~50 Ypos(C 170,53) 2 150

&

Figure 11. Situation Calculus Plan for Stacking Three Blocks

22

Abbreviation Key

sO the wnuial stace s2 DolTransfer(B,A),DolTransfer{A, table2).s0))
s1 Do(Transfer(A, table2),s0) s3 Do(Transfer(C,B),Do({Transfer(B,A),Do{ Transfer(A,table2) s0)))

Arrows run from the antecedent of a rule to its consequent. When a rule has multiple antecedents

or consequents. an ampersand (&) is used. Descriptions of all the rules used in this structure are

contained in the appendix. The primed ampersands are the instantiations of the focus rule. while

mmmmmwmw
::_; Acquiring General Iterative Concepts 23
.
\
hY the lowest ampersand is the goal node.
‘ The goal provided to the backward-chaining theorem prover that produced this grarh s
- 3 AchievableState(?state) A
] Xpos(?object, 7px. ?state) A 7px 2 550 A ?px £ 750 ~
- Ypos(?object, ?py. ?state) A ?py 2 150
- This says that the goal is to prove the existence of an achievable state, such that in that state the
E horizontal position of some object is between 550 and 750 and the vertical position of that same
objects is at least 150.
-
- The sequential-ruie produced by analyvzing this explanation structure appears in table i. The
- remainder of this section describes how each term in this table i1s produced. Line numbers have
:: been included for purposes of reference. For readability, the new rule is broken down into
components. as shown in equation 4. While BAGGER's reordering of a new rule's antecedents
:_-. means the presented rule is somewhat harder to read, table 1 accurately reflects the rule acquired
. and used by the system.
4.1. Producing the Initial Antecedents
(..
. The initial antecedents in the first line of the rule establish a sequence of vectors. the initial
) state, and the first vector contained in the sequence. Subscripts are used to indicale components of
; vectors. as a shorthand for functions that perform this task. For example. v ; is shorthand for
ThirdComponent (?v). Lines 2 and 3 contain the antecedents of the first application in the chain of
g applications. These are the same terms that appear in the focus rule (the first rule in iable A.2),
) except that the components of v, are used. The system has knowledge of which arguments are
E'_: situation variables and the initial state constant 50 is placed in these positions. The other terms in
- this grouping are produced by the unwinding process (Height , Xpos . Y pos . and the addition term)
:l:':. or are moved (2 and <€) from the final antecedents to the initial antecedents because their
| . variables are not influenced by the intermediate antecedents. The terms produced by unwinding
‘ :} are described further in what follows.
.'il
¥ 4.2. Analyzing the Applications of the Focus Rule
b0
Lines 5-11 contain the preconditions derived by analvzing the three instantiations of the focus
N, rule. In this implication, v, - an arbitrary vector in the sequence (cther than the firsi) - is used. as

these constraints must be satisfied for each of the applications that follow the first. Vector v, ;15

x5

Y e T T T Y S T T R T AL T e T AT Rt N T AR I A T A TR T TN T T AT AT TR T A T AT AT AT N AT AR TS TR T T TR TR R TR T R TR TR T Y T U Y TR ST OTRT N

Pt
N
v ' Acquiring General Iterative Concepts 24
"."
. '. _n"
.r":
ia: N.
2t
'1_ Table 1 The Components of the Learned Rule
)
o
, ;'_:} Antecedents ;.
P
:}.j (1) Sequence(?seq) A InitialVector(?v,.7seq) A State(sO) A ?v; ;| =s0 A
,'. (2) FreeSpace(?v, ;.s0) A Liftable(?v; ,.s0) A Height(?v; ,.7v; ,) A
o . .2 . .
o (3) Xpos(?v; 5.7px.50) A Ypos(?v; 3. 7new.s0) A 7v, , = 2 3 A
N
St
; :-r. (4) Ny 5= (?\'l 4"t Tnew) A 7px 2 7xmin N 7px € 7xmax
ot ' :
s Antecedent ;,iermediate
j::_' (5) [Member(?v,. 7seq) A 7, = v, A Member(?v;_;. 7seq) A Predecessor(’v,_;. 7v,. 7seq)
o
Y —
3
pose (6) v, y=72_y 5 A 7 | =Do(Transfer(?v,_; 5. 7v,_y 3).7vi_; ;) A FlatTop(?v; ;) A
. e " - » . 0 » .
NS (7) Block(?v; .) A Height(?v; 5. 7v{)) N v 5, & 7 3 A s = 4+ vy s)
‘\ (8) [[.\Iember(?vj, 7seq) N Earlier('?vj. v, ?seq) - ?vi’ 2 = ?\'j' 3] n Supports(?vi' 5 . s0)]
:::'_'_: (9) V[[Member(?v,, ?seq) A Ear]ier(‘?vj, 7v._,. 7seq) = I\'ot‘.\/Iember(?vJ R LU D) I
H (10) {Member("vj, 7seq) N Earlier(?vj, ?vi_l,?seq) -, E ?vj 3] N
X .2 ,
L~
. (11) Supports(?vi' 3 {7"1-1, ,1.s0) A N, WL 11]
o
:', f~l
A Antecedentsg, .,

;O

(12) Final\’ector(?vn,’.’seq) A 7py =7 ¢ N 7state = Do(Transfer("\'n‘ 2 My 3), o l) N

[
v % %

(13) %object =?v_ , A 7py 2 ?rmin

v,

g

Y

o0

Consequents
(14) State(?state) A Xpos(7object, ?7px, 7state) A 7px € 7xmax A “px 2 ?xmin A

(15) Ypos(7object, 7py. 7state) A 7py 2 ?vymin

. 3 -t
0

This rule extends sequences 1 — N.

".-'

®.-

‘ ’;',

-‘_ Antecedents,, .., \ Antecedenti, ..eqiae * Antecedenis,, — Consequents (4)
v-.";
v,

-‘"‘65"- the vector immediately preceding v;. It is needed because some of the antecedents of the ira
w4

‘;‘ application are satisfied by the (i—/)h application. Although some preconditions in the new rule

W

I'

U

.,::

e

)

..l*.

@4

"

'v':.:

f"’tl"" L T T N VR YRR, SRL IR EE 3 LR L RN AR I I o R T N I B .

-’N ‘\.’- TIT AT AT L PR esy ¥ A7) ,"‘.,ﬂ-,’"{\‘(-.“.', __.-_-"J‘_vr__vl'\lf_“- AT A s '~,,."',"_-",~",» o \j
O S o A O O O R R

]

g

I
[o

2

v

r

5

)

rr s

s
x

S

e

-‘,
¥
P

LY

L AN

Y

.(' '-' .-‘

.

“w

PRI

W emaw ane Sur Sus en Ak ah A4 B 0s-mAYh A 4 aan pen gie au |

Acquiring General Iterative Concepts 25

involve v, and v, _;. these preconditions all refer to conditions in the initial state. They do not refer

1o results in intermediate states.

The final two of the three instantiations of the focus rule produce sufficient information to
determine how the antecedents of the rule can be satisfied in the itk application. In the first
application (upper left of figure 11), neither the support for Liftable nor the support for FreeSpace
provide enough information to determine the constraints on the initial state so that these terms can
be satisfied in an arbitrary step. In both cases. the proof only had to address clearness in the
current state. No information is provided within the proof as to how clearness can be guaranteed

to hold in some later state.

The two other instantiations of the focus rule provide sufficient information for
generalization. Two different ways of satisfying the antecedents are discovered. and. hence. a
disjunction is learned. The common terms in these two disjuncts appear in lines 6 and 7. while the

remairing terms for the first disjunction are in line 8 and for the second in lines 9-11.

The third term in line 7 is the vector form of the inequality that is one of the antecedents of
the focus rule. This, being situation-independent, is a type 3 antecedent. In vector form, it
becomes v, » & v, ;. [t constrains possible collections of vectors to those that have different second
and third members. This constraint stems from the requirement that a block cannot be stacked on

itself.

Both of the successful applications of the focus rule have their AchievableState term satisfied
bv a consequent of a previous application. These terms are type 2 and require collection of the
equalities produced by unifying the general versions of the matching consequents and antecedents.
(See figure 9 for the details of these matchings.) The equality that results from these unifications is
the second term of line 6. Thus, the next state is always completelv determined by the previous
one. No searching needs to be done in order to choose the next state. (Actually. no terms are ever
evaluated in these intermediate states. The only reason they are recorded is so that the final state

can be determined. for use in setiing the situation variable in the consequents.)

Both successful applications have their FreeSpace term satisfied in the same manner.
Traversing backwards across one rule leads 10 a situation independent term (FlatTop - line 6) and
the consequent of an earlier application (Clear). Unifving the two clear terms (again. see figure 9)

produces the first two equalities in line 6. This first equality means that the block to be moved in

m

RSP R SR SR b ~
~f~f~r\f Lol

. P N R I P T I W I Cm® e
Fala Cu e L __f'__-r%-r,‘_.h.-__.r.f\.g_f, oo

~
o)

%

e R R

P ANy M WP RN Wawa "
.A\.Vrs_.r.'.r.r-rr-f 'w__.‘ 7

RO

S ;

Acquiring General Iterative Concepts 26
'_::
‘:_"
_‘- the ith step can always be placed on top of the block 1o be moved in the (i—/)kh step. No problem
i solving need be done to determine the location at which to continue building the tower. {
~ I
" The Block term in line 7 is produced during the process of analyzing the way the Liftable
‘ term 1s satisfied. The remaining portion of the analysis of Liftable produces the terms in the
=~ disjunctions. As in the initial antecedents, the Height and addition terms in line 7 are produced
, during the analysis of the terms in the goal. which is described later.
o
! " In the second application of the focus rule. which produces the first disjunct. a clear block 1o
:_A move is acquired by finding a block that is clear because it supports nothing in the initial state and
a nothing is placed on it later. The frame axiom supporting this is an unwindable rule. Unwinding
:.:3 it to the initial state produces line 8. The Supports term must hold in the initial state and the
E‘_‘ block to be moved in step i can never be used as the place to locate a block to be moved in an earlier
:- . step. The general version of the term NotMember (A .¢) does not appear in the learned rule
because it is an axiom that nothing is a member of the empty set. (An earlier unification, from the
E rule involving Clear . requires that the second variable in the general version of NotMember term
:’: be ¢.)
o\
':- Notice that this unwinding restricts the applicability of the acquired rule. The first disjunct
\ requires that if an initially clear block is to be added to the tower, nothing can ever be placed on it,
even temporarily. A more general plan would be learned. however. if in the specific example a
; block is temporarily covered. In that case. in the proof there would be several groupings of
'_.: unwindable rules: for awhile the block would remain clear, something would then be placed on it
'i'-: and it would remain covered for several steps. and finally it would be cleared and remain that way
"'.'.E until moved. Although this clearing and unclearing can occur repeatedly, the current BAGGER
u " algorithm is unable to generalize number within unwindable subproofs.
oy
.‘H‘ The second disjunct (lines 9-11) results from the different way a liftable biock is found in the
E) third application of the focus rule. Here a liftable block is found be using a block that initially
" supported one other block. which is moved in the previous step. and where nothing else is moved 1o
i :-j the lower block during an earlier rule application. Unwinding the subgraph for this application
1 \,j leads to the requirements that initially one block 1s on the block 1o be moved in step i. that block
?:: be moved in step {i—/ /. and nothing else is scheduled to be moved to the lower block during an
‘. earlier rule applications. Again. some terms do not appear in the learned rule (Member and
o

RemoveFromBag) because. given the necessary urifications. they are axioms. This time

e N e e e T T T e e e T N e T T
A AR A e e e e e e e e e AR
e, -'.."‘.I'.“‘."."."‘.".“"~“J‘.“"“ RN
AT At et e A A A AT AT A AN AN ALASAN

123

e,

O -

e -

PP A

.,
L 4

L,

»

Yrx

o

AaA

LIS

yrs g

L 3

{

:;‘.

v

.

s NA

A

Y-

Acquiring General Iterative Concepts 2%

NotMember is not an axiom. and hence, appears. [f the specific example were more complicated.
the acquired rule would reflect the fact that the block on top can be removed in some earlier step.

rather than necessarily in the previous step.

4.3. Analyzing the Rest of the Explanation

Once all of the instantiations of the focus rule are analyzed. the goal node is visited. This

produces lines 12 and 13, plus some of the earlier terms.

The AchievableState term of the goal is satisfied by the final application of the focus rule.

leading to the third term in line 12.

The final X-position is calculated using an unwindable rule. Tracing backwards from the
Xpos in the goal to the consequent of the unwindable rule produces the first term in line 13, as
well as the third term in line 12. When this rule is unwound it produces the first term of line 3
and the second term of line 6. Also. matching the Xpos term in the antecedents with the one in the
consequents. so that equation 2 applies. again produces the first term in line 6. Since there are no

"Q"-terms (equation 2), no other preconditions are added to the intermediate antecedent.

The inequalities involving the tower's horizontal position are state-independent. their general
iorms are moved 1o the initial antecedents because their arguments are not effected by satisfying
the intermediate antecedent. These terms in the initial antecedents involving ?px insure that the

tower is started underneath the goal.

Unwindable rules also determine the final Y-position. Here “"Q"-terms are present. The
connection of two instantiations of the underlying general rule appears in figure 12. This general
rule is unwound to the initial state, which creates the second term of line 3 and the second term of
line 6. The last three terms of line 7 are also produced. as the "Q'-terms must hold for each
application of the unwound rule. This process adds two components to the vectors in the R/S. The
first (?v,) comes from the ?hx variable, which records the height of the block being added to the
tower. The other (?v, 5) comes from the variable ?vPos 2. It records the vertical position of the
block added. and hence, represents the height of the tower. The ?ypos variable does not lead to the
creation of another RIS entry because it matches the ?yPos 2 variable of the previous application.
All that is needed is a ?ypos variable for the first application. Similarlyv, matching the Ypos term

in the antecedents with the one in the consequents produces the first term in line 6.

LTS] e] - (W g™ (T Y YLV -~ a .
) PC, er - o l'y('-f"-’-’-‘-'{“.l'-‘f.“!‘ N A A
.'.!".Q.l ‘:",!'0!- .:' ‘ o > N o~ " - " \1\ . N ". SO

QEL o G N AN AN o o .

R

SaA

~

a R)
Lrte

&=

-
TemAN

s T

Acquiring General Iterative Concepts 28

-1 # %yi-1 Ypos(?y, -y, 2yposi-;, 7s1-3)

Height(?x,-;, 7hx...1) ?yP082|_1 = (?hx,-; - "yp051—1)

Y pos(?x,_1, 2ypos2,_;. Do(Transfer(?x,-;. ?y;-1). 78y-1))
x; = Py Ypos(?y,. ?ypos,. 7s,)

Height(?x,, ?hx,) 2ypos2, = (?hx; + ?ypos !

Y pos(?x,, ?ypos2;, Dot Transfer(?x,, ?y;), 7s;))
Figure 12. Calculating the Vertical Position of the ith Stacked Block

The last conjunct in the goal produces the second term on line 13. This precondition insures

that the final tower is tall enough.

Finally. the general version of the goal description is used to construct the consequents of the

new rule (lines 14 and 15).

5. EMPIRICAL ANALYSIS

An empirical analysis of the performance of the BAGGER sysiem is presented in this section.
This system is compared to an implementation of a standard explanation-based generalization
algorithm (Mooney and Bennett. 1986) and to a problem-solving system that performs no learning.
Two different training strategies are analyzed. The results demonstrate the efficacy of generalizing

o N.

5.1. Experimental Methodology

Experiments are run using blocks-world inference rules. An iniual situation is created by

generating ten blocks, each with a randomlv-chosen width and height. One at a time, theyv are

dropped from an arbitrary horizontal position over a table: if they fall in an unstabie location,

K

o

4 %
Pl

‘

5,

RN)

RN R, N e <
NN R AT

Acquiring General Iterative Concepts 29

they are picked up and re-released over a new location. Once the ten blocks are placed. a
randomly-chosen goal height 1s selected. centered above a second table. The goa! height s
determined by adding from one to four average block heights. In addition. the goal specifies a
maximum height on towers. The difference between the minimum and maximum acceplable tower
heights is equal to the maximum possible height of a block. This reason for this upper bound is

explained later. A sample problem situation can be seen in figure 13.

Once a scene 1s constructed. three different problem solvers atiempt to satisfy the goal. The
first is called no-learn, as it acquires no new rules during problem solving The second. called
sEBL. is an implementation of a standard explanation-based generalization algorithm. (Explanation
structures are pruned at terms that are either situation-independent or describe the iniual state)
BAGGER 1s the third system. All three of these systems use a backward-chaining problem solver to
satisfy the preconditions of rules. When the two learning systems attack a new problem. they first
try to apply the rules they have acquired. possibly also using existing intra-situational rules. N\o
inter-situational rules are used in combination with acquired rules. in order to limit searching,
which would quickly become intractable. Hence. 10 be successful, an acquired rule must directly

lead 10 a solution without using other inter-situational rules.

BAGGER's problem solver. in order to construct the RJS. is a slightly extended version of the
standard backward-chaining problem solver used by the other two systems. First. the constraints
on ?v; are checked against the initial state. This leads to the binding of other components of the
first vector in the sequence. Next. the problem solver checks if the last vector in the sequence (at
this point. 7v ;) satisfies the preconditions for 7v, . If so. a satisfactory sequence has been found and
back-chaining terminates successfully. Otherwise. the last vector in the sequence is viewed as ”v _,
and the problem solver attempts to satisfy the intermediate antecedent. This may lead to vector
?v, being incorporated into the sequence. If a new vector is added. the final constraints on the

sequence are checked again. If they are not satisfied. the new head of the sequence is viewed as

Figure 13. A Sample Problem

NNt

o~

~ Acquiring General Iterative Concepts 30
3

o
'u'. ?v,_y and the process repeats This cycle continues until either the current sequence satisfies the
! rule’s antecedents or the initial state cannot support the insertion of another vector into the
‘;\' sequence When the current sequence cannot be further extended. chronological back-tracking 1s
: performed. moving back to the last point where there are choices as how 10 lengthen the sequence.
b
'. Two different strategies for training the learning systems are employed. In one. called
_‘, autonomous mode. the learning svstems resort to solving a problem from “first principles” when
j,_‘ none of their acquired rules can solve it. This means that the original inter-situational rules can be
::E: used. but learned rules are not used. When the proof of the solution to a problem is constructed in
, this manner. the systems apply theiwr generalization algorithm and store any general rule that 1s
.: produced. In the other strategy. called training mode. some number of solved problems (the
:::' training set) are initially presented to the systems. and the rules acquired from generalizing these
""I solutions are applied to additional problems (the test ser). Under this second strategy. if none of a
b svstem's acquired rules solves the problem at hand, the system is considered to have failed. No
; ' problem sclving from first principles is ever performed by the learning systems in this mode.
L=

i'.: Unfortunately. constructing towers containing more than two blocks from first principles

o
{ exceeds the limits of the computers used in the experiments (Xerox Dandelions). For this reason,
r" the performance of the no-learn sysitem is estimated by fitling an exponential curve to the data
’ ohtained from constructing towers of size one and two. This curve is used by all three systems to

estimate the time needed Lo construct towers from first principles when required. and a specialized

procedure 1s used 1o generate a solution.

rl
P
-C: Data collection in these experiments is accomplished as follows. Initially, the two learning
¥
:; svstems possess no acquired rules. They are then exposed to a number of sample situations.
.Y building up their rule collections according to the learning strategy applied. (At each point. all
"":E three svstems address the same randomly-generated problem.) Stiatistics are collected as the
N
;} svstems solve problems and learn. This continues for a fixed number of problems. constituting an
‘('3 experimenial run. However. a single run can be greatly effected by the ordering of the sample
‘:, problems. To provide better estimates of performance. muitipie experimental runs are performed.
::'E At the start of each run. the rules acquired in the previous run are discarded. When completed. the
:,'S"',' resuits of all the runs are averaged together. Unless otherwise noted. the data presented in this
ot

section 15 the result of superimposing 25 experimental runs and averaging. In ail of the curves.

&

sehid circles represent data from BAGGER. open circles from sFBL. ard x's frem no-learn.

r

"“._
:.‘:n. AN

-2
AN

N ';"-

' J"n)' B A NN e } et A .f\l‘\.{"--.’\r& W\" T J
~‘~ " ‘ v, " ‘\ o .l“« \ Ka R p M ‘l [) dA.E(. (= N AN A (‘J‘:R'Af;‘(

e v,w-v---,-.“--m.mmmmr'mwmw

- Acquiring General Iterative Concepts 31

Each learning svstem stores its acquired rules in a linear list. During problem solving. these

rules are tried 1n order When a rule is successful. 1t 1s moved to the front of the list This way.

. less useful rules will migrate toward the back of the list. Analysis of other indexing strategies 1s
8 presented 1n (Shavlik. 1988). where a more comprehensive experimental analvsis of EBL s
.\‘

Y presented.

w This indexing strategy is the reason that, in the goal. tower heights are limited. The sEBL
T system would sooner or later encounter a goal requiring four blocks. and a rule for this would
migrate 10 the front of its rule list. From that time on. regardless of the goal height. a four-block
) tower would be constructed. With a limit on tower heights. the rules for more efficiently building
g towers of lower heights have an opportunity to be tried. This issue would be exacerbated if the
o

“

- goal was not limited 1o four-block towers due 1o simulation time restrictions.

o 5.2. Experimental Results

o In this section the operation of the two basic modes of operation — autonomous and training
~

— are analyzed and compared. The autonomous mode is considered first. In this mode. whenever a

system's current collection of acquired rules fails to solve a problem. a solution from first

| &4

principles is constructed and generalized. Figure 14 shows the probability that the learning systems

will need to resort to first principles as a function of the number of sample problems experienced.

-
::; As more problems are experienced. this probability decreases. (On the first problem the probability
15 always 1.) BAGGER is less likely to need to resort 1o first principles than is sEBL because
g BAGGER produces a more general rule by analyzing the solution to the first problem.
On average. BAGGER learns 1.72 sequential-rules in each experimental run. while sEBL learns
~ 4.28 rules. It 1akes BAGGER about 50 seconds and sEBL about 45 seconds to generalize a specific
i problem’s solution. Averaging over problems 26—50 in each run (to estimate the asympiotic
Ny

behavior). produces a mean solution time of 3720 seconds for BAGGER, 8100 seconds for sEBL, and

79.300 seconds*® for no-learn. For BAGGER. this is a speed -up of 2.2 over sEBL and 21.3 over no-

RS

learn. where speed-up is defined as follows:

F‘

~ . .

- mean solution time for B

& Speed-up of A over B = : / .
mean solution time for A

:- * One dav contains 86.400 seconds.

.

W&
N
o
o
Acquiring General Iterative Concepts 32
r
%
)
~
Lo A KFY
- 0.20 ¢+
. std-EBL ------
=2 Probability o BAGGER —
N 1 !
: 0.15 : :
: of Resorting to | :
. 1 {
i :': 0.10 4 ! [
2 | o
~. First Principles C
\. . |
i 0.05 { L Foa
! ! !
.) I | =" F-q
: ' | ' | | t 1 \ -
! | | [i
. oIt 1 — . [
.
:} 2-11 12-21 22-31 3241 42-50
¢ Sample Problem Number Range
e Figure 14. Probability of Resorting to First Principles in Autonomous Mode
\l
M
'. Table 3 compares the speed of the three problem solvers over 625 sample problems (25 sample
L runs times the last 25 problems of each run). Recall that in each run. the three problem solvers all
\)
)
:: address the same problem at each point. The relative speeds of each are recorded and the table ‘
D
'::- reflects how many times each system is the fastest. second fastest. and the slowest. Hence. no-
o
Rdey learn solves about 20% of the problems faster than the two learning svstems and about 60% of the
. problems slower than the other two. BAGGER solves slightly more than half the problems faster '
b
: than do the other two systems. Only comparing the twec learning systems BAGGER solves
2
.\;' about 70% of the problems faster than sEBL does.
[®
B~ Table 3 Relative Speed Summary in Autonomous Mode
L
0".
o | 1st 2nd 3rd
e
No-Learn | 202% 229 570
NG Std-EBL | 248 416 336
)“ '
e BAGGER | 550 355 94

; R BAGGER beats standard EBL: 71.8%

" '\—)l"-"- AT AT AT AT R R AR v NuF n -r\-r\l.-r,. \q.l' -,\-\ \ AP ._ - AN
\ v J, > } A N ~", e fﬁ& PN RSAANAS
¥ WG, A’ WO, "n Wy, A+ W '5..“.:.).\ .-;L-..‘m. Il

‘Fﬂ'ﬁm'mmmwwwmﬁwww "I":"T‘W

g Acquiring General Iterative Concepts 33
7 The numbers in this table only record the order of the three svstems. thev do not reflect by
- how much one svstem beats another For example. building towers containing one biock 1s often
.. shightly faster 1o do from first principles. however towers of multiple blocks can be constructed
much more rapidly by the learning systems. It takes no-learn about 10 seconds to build a tower
.

B2 with one block and 5 x 10° seconds for a tower of four blocks. For BAGGER. these averages are
’ about 20 seconds and 70 seconds. respectively. for problems solved by its acquired rules The
7 performance separation seen in figure 14 is due to the fact that. when averaging numbers that vary

. by several orders of magnitude. the largest numbers heavily dominate
X
> . .

’ Figure 15 plots the number of rules acquired as 4 function of rroblems experienced. The fact
- that the slopes of these curves are continually decreasing indicates that the time between learning
i episodes lengthens. which corresponds to the results of figure 14 That is. the mean time between
-, failures of the acquired rules grows as more problems are experienced.

&
Figure 16 presents the performance during a single experimental run of the two learning

‘ svstems in the autonomous mode. The average Lime to solve a problem is plotted. on a logarithmic

scale. against the number of sample problems experienced. Notice that the time taken to produce a
. solutien from first principles dominates the time taken to apply the acquired rules. accounting for

the peaks 1n the curves.
e
R Because the cost of solving a big problem from first principles greatly dominates the cost of
q applving acquired rules. the autonomous mode may not be an acceptable strategy. Although
‘. A KEY
-~ 10
- std-EBL o——0
.

8 BAGGER []
ey Rules ©
. Learned
4 2
l'-’
- 21 7 G O0E0000e0000000
.:- 0 -
‘A S 10 15 20 25 30 35 30 45 50
Sample Problem Number

a Figure 15. Rule Acquisition Comparison of the Autonomous Problem Solvers
~
..:.
-,
»

A,
f-'rf'-‘. xf, LA

a’sr

waal

{""

Iy
S
s a

-

AP B

l.

Y
,}

o, ~ A
“o"\. \'9‘-'.

N
N

“

Acquiring General Iterative Concepts 34

KEY

A std-EBL o—0
10° - BAGGER [

10°

104

Time
(sec) 10°

10?

10

S 10 15 20 25 30 35 40 45 50
Sample Problem Number

Figure 16. Performance Comparison of the Autonomous Problem Solvers

learning in this mode means many problems will be solved quicker than without learning. the time
occasionally taken to construct a solution when a system'’s acquired rules fail can dominate the
performance. The peaks in the right-side of figure 16 illustrate this. A long period may be
required before a learning system acquires enough rules to cover all future problem-solving

episodes without resorting to first principles.

The second learning mode provides an alternative. If an expert is available to provide
solutions to sample problems and an occasional failure to soive a problem is acceptable, this mode
is attractive. Here. a number of sample solutions are provided and the learning systems generalize
these solutions. discarding new rules that are variants® of others already acquired. After training,
the systems use their acquired rules to solve new problems. No problem solving from first

principles is performed when a solution cannot be found using a svstem’s acquired rules.

> The algorithm for detecting ‘ariants determines if two rules exactlv mach. given some renaming of

~ariables. This means. for instance, that a Ab and b Nc are 7ot variants. Hence. semanticailv equivalent
rule< are not alwavs considered variants. A more sophisticated variant algorithm would reduce the number
of saved rules. However if the variant alporithm considered associativity and commutativity, it would be
much less efficient (Benanav, Kapur. and Narendran. 1985).

NI GLEL T
S

e

RS

n_" -.'_1 J

1

The performance results in the training mode are shown in figure 17. After ten training
problems. the systems solve 20 additional problems. In these 20 test problems. the two learning
systems never resort to using first principles. BAGGER takes. on average, 36 6 seconds on the test
problems (versus 3720 seconds in the autonomous mode), sEBL requires an average of 828 seconds

(versus 8100 seconds), and no-learn averages 68,400 seconds (versus 79,300 seconds).

Since no-learn operates the same 1n the two modes, these statistics indicate the random draw
of problems produced an easier set in the second experiment. The substantial savings for the two
learning svstems (99% for BAGGER and 90% for sEBL) are due 10 the fact that in this mode these
systems spend no time generating solutions from first principles. In this experiment. BAGGER has a
speed-up of 22.6 over sEBL (versus 2.2 in the other experiment) and 1870 over no-learn

(versus 23).

The relative speeds of the three systems in the training mode appear in table 4 (Only
statistics from problems where all three problem solvers are successful are used to compute this
table. As described later, this is about 98% of the test problems.) These numbers are comparable

with the corresponding table for the autonomous mode. The main difference s that sEBL performs

KEY
no-learn Mk
[} ‘ std-EBL o—o0
10° { BAGGER Qg
10° 1 E W“

10* +

Time -<— (raining ser —o=

; :
sec) 1077 ck\o_cﬁ\.)_/‘\/_o_/ N
107 ¢ E Q

1 ' . ,
S 10 15 20 25 30

v

Sample Problem Number

Figure 17. Performance Comparison of the Trained Problem Solvers

.\'. "\l',f\‘

o~ TN

W 'n'a.m?\.r\n.‘.r A .n_'\n}fﬁ e

T—_—'—-—“ TTERRATRSTEOARST R EAARTTRTTRTRTTR TR E TR YO RN RO A A TN TR TR TN Y. S N NTYTN R, YT V‘&""“G"“‘-"—*‘T
.i\ Acquiring General lterative Concepts 35 ‘
-

."’c

; mg b ~ ” vv*{
e
"
"' Acquiring General Iterative Concepts 36
LN #
N
o
N
-
L'
- Table 4 Relative Speed Summary in Training Mode
2
o | 1st 2nd 3rd
~
N No-Learn | 208% 15.1 64.1
S
* Std-EBL 21.6 478 307
: BAGGER | 57.6 371 52
e,
§ 3‘: BAGGER beats standard EBL: 75.4%
o
T
" ,
worse relative to the other systems (although its absolute performance is about ten times better
\ than in the autonomous mode). The probable reason for this is that in the training mode the
'-\1 learning systems acquire more rules than in the autonomous mode.
s The number of rules learned as a function of the size of the training set is plotted in figure 18. H
e As before. BAGGER learns less rules than does sEBL and it approaches its asvmptote sooner. Once
\.
- the training set size exceeds about a half dozen examples. more rules are learned in the training l
3
"y mode than from 50 problems in the autonomous mode. This occurs because. during the training
! phase. new rules can be learned from problems that some previouslv-learned rule could have l
['-‘
K. KEY '
.:‘ std-EBL o—0
g) BAGGER [N
e I}
M 14 |
o
N
~ 12 1
"'\
2 10 |
' Rules 8 |
y Learned
l
, 4
". L
M 2
L 0
: -\“ 5 10 15 20 25 30 35 40 45 S0
™ .
e Number of Training Problems
s
y
My
AN Figure 18. Rule Acquisition Comparison of the Trained Problem Solvers
e
\:‘ ()
‘::::.;
'
L J
X
:ln
oy "-3-;*.:.&"&;\"\’\;\‘;\:\;\"x';:." wha, '('_'.:,_- ';‘.;-.:'. AR/ Nl -:‘}‘ N J_;J_-\ . { P

L bl

- e

(30

S ws

2l
(SN

Acquiring General Iterative Concepts 3=

sclved. albeit in a different way than the expert’s solution Recall that in the training mode the
expert's solution 1s immediately given — the systems do not first try 1o solve the problem Only

general rules that are simple svntactic variants of previously-acquired rules are discarded

One of the costs of using the training mode is that occasionally the learning systems will not
be able to solve a problem. Figure 19 plots the number of failures as a function of the size of the
training set. In each experimental run used to construct this figure, 20 test problems are solved
after the training examples are presented. With ten training solutions. both of the systems solve

over 98.5% of the test problems.

The final figure in this section, figure 20. summarizes the performance of the three svstems n
the two training modes. Note that a logarithmic scale is used. Both of the experimenis
demonstrate the value of explanation-based learning and also show the advantages of the BAGGER
system over standard explanation-based generalization algorithms. BAGGER solves most probiems
faster than do the other two systems, its overall performance is better. and it learns less rules than
does sEBL. Comparing the two training modes demonstrates the value of external guidance v
learning svstems. If a system solves all of its problems on its own, the cost of occasionally solving
complicated problems from first principles can dissipate much of the gains from learning. The
remainder of this chapter investigates variants on these experiments, comparing the results to the

data reported in this section.

‘r KEY
50% std-EBL —
0% BAGGER [o]
Problems 30%
TUnsolved
(%) 20%

10%

1 2 3 4 5 6 = 8 9 10
Number of Training Problems

Figure 19. Failure Comparison of the Trained Problem Solvers

hndoiad Aad el dad calte b Al o Al oo Alle Bhe Ale Bia gty i o A4 A A b AR ol Aol S Wad M Mot Sles Se-oda- g o otth aih ote Bl B g Sk Sad Sl Snd Sad S i Ade Aie it ANSne bRt A ""T‘vt’

)

OO
oL L
AR

o
S

3
o

.,
)
[

Yy
[¢
L,

 (OLOL
l{‘A'kl."_

2,

'y
D0

7’

4 4
b4

A

4, 4
':‘f‘.{a

l!‘ l.

4 e e o s A ,

A b A

TS
Vel N _-".-‘.-‘.' .5‘. .‘.’

g
A Py
A 3 .

-
a'
4,
A

s
ks

- 4 s |
.,s.ls'w. 5 'fﬁ .

]

KR

W T

Y A T R R A A T T R T A T AR A TR T R TR R T R T T U R TN TR TR TR TR R TR YRRV TRTRTRAASS TR S TR,

Acquiring General Iterative Concepts 38
KEY

no-learn

std-EBL - ---

BAGGER —_—
100,000 +
10,000 4 N i
Time 1900 71 B SRR
) o0 | B BES
10 { R i
Autonomous Mode Training Mode

Figure 20. Performance of the Three Systems in the Two Modes

53. Summary

The empirical results presented in this section demonstrate the value of generalizing to .V. In
the two training strategies investigated. BAGGER performs substantially better than a svstem that

performs no learning. BAGGER also outperforms a standard explanation-based learning system.

Other researchers have also reported on the performance improvement of standard EBL
systems over problem solvers that do not learn (Fikes. Hart. and Nilsson. 1972; Minton. 1985:
Mocney, 1988: O'Rorke. 1987b; Prieditis and Mostow, 1987; Steier, 1987). One major issue is that.
as more new concepts are learned. problem-solving performance can decrease. This occurs because
substantial time can be spent trying to applyv rules that appear promising, but ultimatelyv fail
(Minton. 1985: Mooney. 1988). Also. a new broadly-applicable rule, which can require substantial
time to instantiate. may block access 10 a more restricted. vet often sufficient. rule whaose
preconditions are easier to apply (Shavlik, Delong, and Ross, 1987). While the non-learning svstem
outperforms the learning systems on some problems. in the experiments reported in this section the

overall effect is that learning is beneficial.

It may seem that investigating only tower-building problems unfairlv favors explanauion-

based learning. An alternative would be to investigate a moere diverse collection of problem tyvpes.

A P AT o L
N S A
o8 T ¥ Ty A SR b . .

T

:4_' Acquiring General Iterative Concepts 39
o
3
N However, the negative effects of learning are manifested most strongly when the acquired concepts
. are closely related. If the effects of some rule support the satisfaction of a goal. substantial time
! can be spent trying to satisfy the preconditions of the rule. If this cannot be done. much time s
| . wasted. To the sEBL system, a rule for stacking two blocks is quite different from one that moves
‘::: four blocks. Frequently a rule that appears relevant fails. For example, often sEBL tries to satisfy
a rule that specifies moving four blocks to meet the goal of having a block at a given height, only 10
g fail after much effort because all combinations of four blocks exceed the limitations on the tower
| - height. When the effects of a rule are clearly unrelated to the current goal. much less time 1s
::3 wasted. especially if a sophisticated data structure 1s used Lo organize rules according to the goais
they support.
:E ¥ suppo
i The BAGGER algorithm leads to the acquisition of fewer rules, because one of its rules may
X subsume many related rules learned using standard EBL. In this section’'s experiments. this
< decreases the likelihood that time will be wasted on rules that appear to be applicable. The
probability that. in the training mode. a retrieved rule successfully solves a problem is 0.595 for
2 sEBL and 0.998 for BAGGER. Additionaily. fewer training examples are needed for BAGGER 1o
" acquire a sufficient set of new rules. These advantages over standard EBL magnify if the range of
. possible tower heights is increased (Shavlik, 1988).
- The two training modes demonstrate the importance of external guidance to learning svstems.
’ I the autonomous mode. the svstems must solve all problems on their own. The high cost of doing
m this when no learned rule aprlies dissipates much of the gains from learning. Substantial gains can
R be achieved by initially providing solutions to a collection of sample problems, and having the
“..;: learners acquire their rules by generalizing these solutions. The usefulness of this depends on how
b representative the training samples are of future problems and how acceptable are occasional
5 failures. Again. since BAGGER requires less training examples and produces more general rules. 1t
addresses these issues better than does standard EBL.
;:;i 6. RELATED WORK
. The need to generalize number in EBL was first pointed out in (Shavlik and DeJong. 1945).
:::' where the knowledge that momentum is conserved for anyv A objects 1s learned from an example
-~ :nvoiving the coilision of a fixed number of balls. Besides BAGGER., several other explanation-based
\ aprroaches 1o generalizing number have been recently proposed.
X
N
- e

LT T T R R VI
-r\'n \"'\-/"_. _‘J'\-)‘\f

e

A

0
e
Acquiring General Iterative Concepts 40
:\
-
NI
:.,_ Prieditis (1986) has developed a system which learns macro-operators representing sequences
»
v \‘ of repeated STRIPS-like operators. While BAGGER is very much 1n the spirit of Prieditis’ work,
..:"_f STRIPS-like operators impose unwarranted restrictions For instance, BAGGER's use of predicate
j ENE calculus allows generalization of repeated structure and repeated actions in a uniform manner In
:’-:: addition. the BAGGER approach accommodates the use of additional inference rules to reason about
' what is true in a state. Everything does not have to appear explicitly in the focus rule For
::‘\ example, in the stacking problem, other rules are used to determine the height of a tower and that
LSRR
' ;5 an object 1s clear when the only object 1t supports is transferred. Also instantiations of the focus
::": rule do not have 1o directly connect — intervening inference rules can be involved when
\::. determining that the results of one instantiauion parually support the preconditions of another
"':::: Priedius’ approach only analyzes the constraints imposed by the connections of the precondition.
'S:i::: add. and delete lists of the operators of interest. There is nothing that corresponds to BAGGER's
n°,
e , unwinding operation nor are disjunctive rules learned.
A
E;* In the FERMI system (Cheng and Carbonell. 1986). cyclic patterns are recognized using
' \':J empirical methods and the detected repeated pattern is generalized using expianation-based learning
':J" techniques. A major strength of the FERMI svstem 1s the incorporation of conditionals within the
NS learned macro-operstor. However, unlike the techniques implemented in BAGGER. the rules
E\ acquired by FERMI are not fully based on an explanation-based analysis of an example. and so are
:::Ef:: not guaranteed to always work. For example. FERMI learns a strategy for solving a set of linear

algebraic equations. None of the preconditions of the strategy check that the equations are linearly

o

:::::: independent. The learned strategy will appear applicable to the problem of determining x and ¥
E:::_:: from the equations 3x +y¥ =5 and 6x +2y =10 After a significant amount of work, the
:.3, strategy will terminate unsuccessfully.

4

o Cechen (1987) has recently developed and formalized another approach to the problem of
R,

."\: generalizing number. His sysiem generalizes number by constructing a finite-state contro!
-E mechanism that deterministically directs the construction of proofs similar to the one used to
~.~ ustif v the specific example. One significant property of his method is that it can generate proof
. j_?: procedures invelving tree traversals and nested loops. A major difference bet'ween Cohen's method
_E:-: and cther explanation-based algorithms is that in his approach ne “internal nodes” of the
?’;_ explanation are eliminated during generalization. In other explanation-based algorithms, only the
. 3 ieaves of the operationalized explanation appear in the acquired rule. The generalization process
y

guarantees that all of the inference rules within the explanation apply in the general case. and tne

. &
X
v

>
)t
3
»

o i A e el A T s A e e e e dE e Aie_ARa She Abe SEe BSs e R6n 8 A R A f A 8 Al Aok St ol Aad ek ARt " bh oAl dh b ateh ML 'S & Aol Sk S A |

IR < an it i e BRI g R ey T RS R Bl At At il Rt Bl Bat Suf Sl Aell Balk A Rall Baf Buft Sk Rk S A Dl 2 0 A Tl S e P R AW J"1

h .;:,' Acquiring General Iterative Concepts 11
| el
; -
o
f final result can be viewed as a compilation of the effect of combining these rules as generally as
possible. Hence. to apply the new rule. only the general versions of these leave nodes need be
; ! satisfied. In Cohen’s approach. every inference rule used in the original explanation is exphicitly
‘ .. incorporated into the final result. Each rule mayv again be applied when satisfving the acquired
:}:: rule. Hence. there is nothing in this approach corresponding to unwinding a rule from an arbitrary
state back to the initial state., and the efficiency gains obtained by doing this are no! achieved.
, ? Finally. because the final automaton is deterministic. it incorporates disjunctions only 1n a limited
way For example, if at some point two choices are equally general. the ordering ip the final rule
_ will be the same as that seen in the specific example.
- A fourth system, Physics 101 (Shavlik and Delong. 1985. 1987a: Shavlik 1988), differs trom
i = the above approaches in that the need for generalizing number is motivated by an analytic
" justification of an example's solution and general demain knowledge. This svstem learns such
..-. concepts as the general law of conservation of momentum (which is applicable tc an arbitrary
- collection of objects) by observing and analyzing the solution to a specific three-bodyv collision. In
: ': the momentum problem. information about number, localized in a single physics formula leads to
.. a global restructuring of a specific solution’s explanation. However. Physics 101 s designed 10
. . reason about the use of mathematical formulae. Its generalization algorithm takes great advantage
. of the properties of algebraic cancellation (e.g.. x —x =0). To be a broad solution of the
j generaiization to N problem. non mathemaucallv-based domains must also be handled
' Another aspect of generalizing the structure of explanations invoives generalizing the
r o organization of the nodes in the explanation, rather than generalizing the number ot nodes. An
. approach of this form is presented in (Mooney. 1988), where the tempcral order of actions s
E -:‘. generalized in plan-based explanations. The approach is limited to domains expressed :n the
| . STRIPS-formalism (Fikes and Nilsson, 1971).
i ’?
X B The problem of generalizing to .V has also been addressed within the paradigms of similarity-
; '::':' based learning (Andreae, 1984. Dietterich and Michalski. 1983: Dufay and Latombe. 1954: Holder.
- in preparation: Michalski. 1983. Whitehall, 1987: Wolff. 1982) and autlomatic programminyg
N - {Biermanr. 197%: Kodratoff. 1979, Summers. 1977: Siklossy and Svkes. 19751 A general
E } specification of number generalization has been advanced by Michalski (1983). He proposes a set ot
VA generaiization rules including a closing interval rule and several counting arguments rules which can
_ generate number-generalized structures. The difference between such similarity-based approaches
e
&

R >, A T PR ", , R I N A I P P Ly G A g B R R . N AN AL A
25 '(= "' Y ",l"' -~ RS YRS RN T NS AL NI A A R '\""\""}'\‘ :}t\'\'r\‘r'\."\

+ . - o]
a 9800 Uy, LA AN AN A o Ba b8 LA B Rallelal A 8 (S { oS » Ol

(PPl
Y y

5 5 5

[]
YN
‘.‘l.l

L.

CPRRY: -
s
ANNAAAL _ 2

e

..
NP
-‘.I

a
»

p—
P A s
5 S OL T

LA SN
(AADNN

ﬁ‘.

o
[T T UGS

PURNENEAEN

~a
b
()

7.7, ¢JOp

RN T

Pd

" ™ X L
A PCae
.'h..).'-.'.

Saaes

SR

e
SRUONNXE 2

IR Y

basvsas

A% o
L

T
cat st LA

@ &
Y by he k]

2
19N LT T S Y
one AN A

Acquiring General lterative Concepts 42

and BAGGER's explanation-based approach is that the newly formed simiiarity -based concepis
tvpically require verification from corroborating examples. whereas the explanation-based concepts

are immediately supported by the domain theory.

7. SOME OPEN RESEARCH ISSUES

The BAGGER syvstem has taken important steps towards the solution 1o the 'generalization
to N7 problem. However the research is still incomplete. From the vantage point of the current

results. several avenues of future research are apparent.

One issue in generalizing the structure of explanations is that of deciding when there 1s enough
information in the specific explanation to usefullyv generalize its structure. Due to the finiteness of
a specific problem. fortuitous circumstances in the specific situation mav have allowed shortcuts in
the solution. Complications inherent in the general case mayv not have been faced. Hence the
specific example provides no guidance as to how they should be addressed. In BAGGER. the
requirement that. for an application of a focus rule to be generalized. it be viewable as the
arbitrary itk application addresses the problem of recognizing fortuitous circumstances. If there is
not enough information to view it as the irx application. it is likely that some important issue 1s
not addressed in this focus rule application. However, more powerful techniques for recognizing

fortuitous circumstances need to be developed.

Related io this. BAGGER's method of choosing a focus rule needs improvement. Currentlyv the
first detected instance of interconnected applications of a rule is used as the focus rule. However.
there could be several occurrences that satisfy these requirements. Techniques for comparirg
alternative tocus rules are needed. Inductive inference approaches 1o detecting repeated structures
(Andreae. 1984; Dietterich and Michalski. 1983: Dufayv and Latombe. 1984: Holder. in preparation:
Weld. 1956: Whitehall. 1987: Wolff, 1982) mav be applicable to the generation of candidate focus

rules. from which the explanation-based capabilities of BAGGER can build.

A second research topic is performing multiple generalizations to M in a single problem.
Especially interesting is interleaved generalization to N. Here. in the final resuit. each application in
an arbitrary length sequence would be supported by another sequence of arbitrary length. In other
words. a portion of the intermediate antecedent of a BAGGER rule would be the antecedents of
another BAGGER rule. Learning an interleaved sequential rule from one example may be tco

ambitious. A more reasonable approach mayv be to first learn a simple sequential rule. and then use

n
o

N e e N e e
LA e

~ DRI TP e T e " P W % I W D T R I e . LI N -
AN N G NN, Lo N SR R L A, ~ O OEY
AR N N o W o e 5 2 S Y N X CaX

TS W R
SovonN

oL

Parars

s N
L 4

Acquiring General Iterative Concepts 43

1t in the explanation of a later problem. Managing the interactions between the two R/S's 1s a
major issue. See Cchen (1987) for a promising approach 10 the problem of interleaved

generalization to N.

A third area of future research is to investigate how BAGGER and other such systems might
acquire accessory inter-situational rules. such as tframe axioms. to complement their composite
rules. Currently each of BAGGER's new sequential inference rules specifies how to achieve a goal
involving some arbitrary aggregation of objects by applving some number of operators. These rules
are useful in directly achieving goals that match the consequent. but do not effectively improve
BAGGER s back-chaining problem-solving ability. This is because currently BAGGER does not
construct new frame axioms for the rules it learns. (This problem is not specific 10 generalizing

10\ Standard EBL algorithms must also face it when dealing with situation calculus.)

There are several methods of acquiring accessory rules. Thev can be constructed directly by
combining the accesscry rules of operators that make up the sequential rule. This may be
intractable as the number of accessory rules for initial operators may be large and they may
increase combinatonally 1n sequential rules. Another potentiallv more atiractive, approach is to
treat the demain theoryv. augmented by sequential rules, as intractable Since the accessory rules
for learned rules are derivable from existing knowledge of initial operators, the approach in (Chien.

1987) might be used 1o acquire the unstated but der:vable accessory rules when thev are needed.

Investigating the generalization of operator application orderings within learned rules is a
fourth opportunity for future research. Currently, in the rules learned by the BAGGER algorithm.
the order interdependence among rule applications is specified in terms of sequences of vectors.
However. this 1s unnecessarily constraining. When valid. these constraints should be specified in
terms of sets or bags® of vectors. This could be accomplished by reasoning about the semantics of
the <vsiem's predicate calculus functions and predicates. Properties such as symmetry.

transitivity, and reflexivity mayv help determine constraints on order independence.

I a set satisfies a learned rule’s antecedents. then anyv sequence derived from that set suffices.
Conversely. if the vectors in a set fail to satisfv a rule's antecedents. there is no need to test each
permutation of the elements. Unfortunately, tesung all permutations occurs if the antecedents are

unnecessarily expressed in terms of sequences. For example. assume the task at hand is to fina

2

A hag for multi-set) is an wrordered collection of elements in which an element can appear more than once.

“, =

- e e
SRR \f"-'"‘.'f'." SO >

“,, AP IR TS St .‘**-._:.J‘ . v ._*-‘,. .-\;n"_»*_,.:"
“ \4\ \:\:\c“-':'&l‘-f \) -"j\- \-'\ :(:‘.\.'\}’\‘ N

P
A SV Y

Py
AN

ey ’
PR R
!{\. $. 1‘\"

LT AR T

[R

P Pl
afe ¥ %4

s 8 s
L R S

e R X - . r o
4 L]
5;"',“/". .l“"‘ . - ‘ll “l 1 s .".'.‘ ."'."'

OO0 64
[N Wy !

O

AT .“5;5 s

® 5N

Pl i
& e L)
‘_1

S

@

LSS L R

.
L
R
Y

b

M

ah

W

Acquiring General Iterative Concepts 34

enough heavy rocks in a storehouse 10 serve as ballast for a ship. A sequenual rule may first add
the weights in some order. find out that the sum weight of all the rocks in the room 1s insufficient,
and then try another ordering for adding the weights A rule specified in terms of sets would

terminate after adding the weights once.

A fifth area of future research involves investigating the most efficient ordering of conjunctive
goals. Consider an acquired sequential rule which builds towers of a desired height. subject to the
constraint that no block can be placed upon a narrower biock. The goal of building such towers 1s
conjunclive: the correct height must be achieved and the w:idth of the stacked blocks must be
monotonically non-increasing. The optimal ordering 1s to select the blocks subject only to the
height requirement and then sort them by size to determine their position in the tower. The reason
this works 1s that a non-increasing ordering of widths on any set of blocks is guaranteed so that no
additional block-selection constraints are imposed by this conjunct. The system should ultimately

detect and exploit this kind of decomposability to improve the efficiency of the new rules.

Satisfving global constraints poses a sixth research problem. The sequential rules investigated
in this chapter are all incremental in that successive operator applications converge toward the goal
achievement. This is not necessarily the case for all sequential rules. Consider a sequential rule for
unstacking complex block structures subject 1o the global constraint that the partially dismantled
structure alwavs be stable. Removing one block can drastically clier the significance of another
block with respect 10 the structure’s stability. For some structures, only the subterfuge of adding
a temporary support block or a counter-balance will allow unstacking to proceed. A block may be
safe to remove at one point but be essential to the over-all structural stability at the next. even
though the block actually removed was physically disiant from it. Such non-incremental effecis
are difficult 1o capture in sequential rules without permitting intermediate problem-solving within

the rule execution.

The RIS, besides recording the focus ruie's variable bindings. is used to store intermediate
calculations, such as the height of the tower currently planned. Satisfying global constraints may
require that the information in an RIS vector increase as the sequence lengihens. For example.
assume that each hlock to be added to a tower can only suppert some bleck-dependent weight. The
RIS mayv have to record the projected weight on each block while BAGGER plans the construction of
a tower. Hence as the sequence lengthens. each successive vector in the R/S will have to record

information fcr cne additional block. Figuratively speakinyg, the K/S wiil be getting longer and

o, f
"-"-" ‘.'- "\. s. ~ j\.’*. N "

J‘" -

"y p-,—.,&

Sl

o tn i L

ot Sed Sl S A i S A Ba S ars st ol gl are st avh oML oS Aol oA A oag e ol S SR aiE s S ol AR S Al A el Soliad dat Bar b aes diat S ek Jhad Rat i A b Jin® Syt Sab J .."

Ly
.C: Acquiring General Iterative Concepts 45
L
N
5
- wider The current BAGGER algorithm does not suppor! this
' Often a repeated process has a closed form solution. For example. summing the first N
integers produces 2=l There is no need to compute the intermediate partial summations A
\-’ . . . |
- recurrence relation i1s a recursive method for computing a sequence of numbers Recognizing and

solving recurrence relations during generalization is a seventh area for additional research.

Many recurrences can be solved to produce efficient ways to determine the nrh result in a
sequence. It is this property that motivates the requirement that BAGGER's preconditions be
expressed solely in terms of the initial state. However. the rule instantiation sequence still holds
- intermediate results. While often this information 1s needed (if, for instance. the resulung
sequence of actions is 1o be executed in the external world). BAGGER would be more efficient if i1
could produce. whenever possible, number-generalized rules that did not require the construction
o of an RIS. If BAGGER observes the summation of. sav. four numbers it will not produce the
efficient result mentioned above. Instead it will produce a rule that stores the intermediate
summations in the RJ/S. One extension that could be attempted 1s to create a library of templates

for soluble recurrences. matching them against explanations. A more direct approach would be

.
‘

more appealing. Weld's (1986) technique of aggregation may be a fruitful approach. Aggregation

1¥ an abstraction technigue for creating a continuous description from a series of discrete events.

:-\ The issue of termination is an eighth research area. One important aspect of generalizing
u number 1s that the acquired rules may produce data siructures whose size can grow without bound
. for example. the rule instantiation sequence in BAGGER) or the algorithms that satisfy these rules
may fall into infinite loops (Cohen. 1987). Although the halting problem is undecidable in general.
'_::: in restricted circumstances termination can be proved (Manna. 1974). Techniques for proving
. termination need to be incorporated into svstems that generalize number. A practical. but less
_’-: appealing. solution is to place resource bounds on the algorithms that apply number-generalized
] rules (Cohen. 1987). potentially excluding successful applications.

i” Finally, it is important to investigate the generalization to N problem in the context of
o imperfect and intractable domain models (Mitchell, Keller. and Kedar-Cabelli, 1986: Rajamonex
- and Delong. 1957). In any real-world domain, a computer svstem’s model can only approx:mate
o rezlitv. Furthermore. the complexity of problem solving prohibits anv semblance of completeness.
: Thus far BAGGER's sequential rules have relied on a correct domain model. and it has not addressed

- issues of intraclability. other than the use of an outside expert to provide sample soiutions w hen

‘,,-.“:
«
N
)~ Acquiring General Iterative Concepts 6
: COAN
WSS
AR
LSRN
o the construction of solutions from first principles 1s intractable
e
RSy
g
N 8. CONCLUSION
i -h.:
S
b Most research in explanation-based learning involves relaxing constraints on the variables in
b Ixi
Ty an explanation. rather than generalizing the number of inference rules used. This article presents
,‘ J an approach to the task of generalizing the structure of explanations. The approach relies on a shift
o
) .\ in representation which accommodates indefinite numbers of rule applications. Compared to the
= J'I
: . results of standard explanation-based algorithms. more general rules are acquired. and since less
e
[) - .
R rules need to be learned. better problem-solving pertormance gains are achieved.
A
I\ 3 .
o To illustrate the approach. a situation calculus example from the blocks world is analyzed.
{:’_ This leads 10 a plan in which the number of blocks 10 be placed in a tower is generalized to .M. In
o . .
,.‘-f. this example. the svstem observes three blocks being stacked upon one another, in order to satisfv
Ty the goal of having a block located at a specified height. Initially. the system has rules specifying
' ":-'.: how to transfer a single block from one location to another. and how the horizontal and vertical
\:-'." position of a block can be determined after is is moved. By analyzing the explanation of how
T , . :
{ : moving three blocks satisfies the desired goal. BAGGER learns a new rule that represents how an
‘ unconstrained number of block transfers can be performed in order to satisfy future reiated goals.
?::
S The fully-implemented BAGGER svsiem analvzes explanation structures (in this .ase.
" L
o .

predicate calculus proofs) and detects repeated. inter-dependent applications of rules. Once a rule

OX

on which to focus attention is found. the system determines how an arbitrary number of

-
te N

L2

o instantiations of this rule can be concatenated together. This indefinite-length collection of rules is
A conceptually merged into the explanation. replacing the specific-length collection ¢f rules. and an
Lo

® extension of a standard explanation-based algorithm produces a new ruie from the augmented
! *\-_.*- explanation.
\ A

‘.;.\

\,:\ Rules produced bv BAGGER have the important property thal their precondilions are
A8

v . . : _

2%y expressed in terms of the initial state - they do not depend on the situations producec bv
v, intermediate applications of the focus rule. This means that the results of multiple applications of
.

::» :: the rule are determined by reasoning onlyv about the current situation. There is no need to applyv
,r the rule successivelv, each time checking if the precenditions for the next application are satisfed.
- \ g P P

.'f The specific example guides the extension of the focus rule into a structure representing an

s
e

arbitrary number of repeated applications. Information not contained in the locus rule. but

N~

e T R e e e T e e e T AN AT N _'.;,,’q'
P A N Y S R AT \\\\.\'\'*-"\'\.\{:
S e t!.“l.ﬂhl;{;.’f;_‘..n. U P T R N BT A AT,

Y - .Y

Ll s
€

PR

S 'll

< A"S

A N A e Aeh Aeh DA il Rl S Al BN Bl S Al B ACh AR A AL 2L AP S AL R NE A M A A B B B AN AR A B AP N A R AN A A

Acquiring General lterative Concepts 4~

appearing in the example, is often incorporated intc the extended rule. In particular, unwindable
rules provide the guidance as to how preconditions of the ik application can be specified in terms of

the current state.

A concept involving an arbitrary number of substructures may involve any number of
substantually different problems. However a specific solution will have necessarily only addressed
a finite number of them. To generalize to A, a system must recognize all the problems that exist in
the general concept and. by analyzing the specific solution. surmount them. If the specific solution
does not provide enough information to circumvent all problems, generalization to N cannot occur
because BAGGER 1s designed not to perform any problem-solving search during generalization.
W hen a specific selution surmounts. in an extendible fashion. a sub-problem in different wayvs

during different instantiations of the focus rule, disjunctions appear in the acquired rule.

An empirical analysis of the benefit of generalizing the structure of explanations has been
pertormed. These experiments :ndicate a performance improvement of at least an order of
magnitude over standard explanation-based algorithms and several orders of magnritude over a

obiem solver that does not learn.

Generalizing to M 1v an umportant property currentlv lacking in most explanation-based
stemms This research contiributes to the theoryv and practice of explanation-based learn:ng by
ce.eioping and testing methods for extending the structure of explanations during generalizat:on.
It brings this feld of machine learning closer to its goal of being able to acquire the full concept

irherent in the soiution 1o a specific problem.

ACKNOWLEDGEMENTS

The authors wish to thanks the other members of the explanation-based learning group at
[il:nows. Interactions with Rayvmond Moonev, Shankar Rajamoney. Scott Bennett, Steve Chien. and

Melinda Gervasio have stimulated many interesting 1deas.

o s oA
I.f .’ "'} :.r.-//.r\.r,.rgﬁ AL _ N*.J‘ ’,‘.

Lol ol + e

wiviv. v . r.v.iwg

v
)
‘-. -

\ }). .
l‘ LI ' l‘ L) l‘
PR L
I

<

i

."1. e ¢
4

s
.

3
. ." ." S

oo

--.- ,
4

-
i
(AR N

L

-

Pl i

Chek
o

LA
SAANY S

: £
‘f\"a"i.

L}
s

.

E AN
LY
At

Y
Faar

0

2
Pt

8 ."‘(. o

o
-

P 4 40
' s F - "'.Ix
Ll L{\ PSR PR

i

P

¢

}v

Acquiring General Iterative Concepts 18

APPENDIX: THE INITIAL INFERENCE RULES

The inference rules used in the tower-building (stacking) example are presented in this
appendix. Not all the rules in the svstem are presented. However, a complete collection of the
rules can be found in (Shavlik. 1988). The first table contains those rules that describe inira-
situation inferences. while inter-situation inferences appear in the second table. The first rule in
the second table 1s the definition of the transfer action This rule is the focus rule of the stacking
example. (The construct {?a ?b! matches a list with head %c and tail ?b. Fer example. if matched

with {x.v.2}. %2 1s bound to x and ?b 10 {v.2}.)

g Table A.1. Intra-Situation Rules Used in the Stacking Exampie |

7 Rule Description

Clear(?x.7s) . | If an object is clear and has a flat top. space is
- F 7x.?
FlatTop(?x) reeSpace(”x.”s) i available.

Clear(?x.7s)
ear — Liftable(?x.7s) | A block is liftable if it is clear.

Block(?x)
! Box(?x) — FlatTop(?x) : Boxes have fiat tops.
Tablel?x) — FlatTop(?x) % Tables have flat tops.
Box(?x) - Block(?x) | Boxes are a type of block. J

Supperts(?x.6.7s) - Clear(?x.%s) An object is clear if :t is supporting nothing.

|

7x & v — 7y o= ' Inequality is reflex:ve.
I e . ‘ R
x =7y " If two objects are distinct, and the first 18 not in
NotMember(”x.”bag) a collection of cobjects. then the first 1s not a
— member of the collection that results from

adding the second object to the criginal

NotMember(?x.{?v . Tbag})

collection.

NotMember(?x.¢) | Nothing is a member of the empty set.

Member(?x {x}} . Evervthing 1s a member of the singleton se:
containng 1t.

RemoveFromBag("x.{°x 7bag!.’bag) ~ Remove this object from a collection of objects.

{
- producing a new ccliection ot objects l

A S R

. .y

o - Pt . ¢ = -~
R N e A S TS
LR I R R A AR

P

.
)

f._('.

P
MY

RRA

te-

LN

o,

s

.

| BN]
A

NEPN |

w3
s &%

. A

v \._\.

[19N

Acquiring General Iterative Concepts

49

Table A.2. Inter-Situation Rules Used in the Stacking Example

Rute

Description

AchievableState(’s)

Liftable(°x.”s)

FreeSpace(?y.%s)

oy o Oy

AchievableState(Do(Transfer(’x.”y).?s))
Clear(?x,Do(Transfer("x,”v).7%s))

On(”x.”y Dot Transfer(?x.?v).”s))

If the top of an object 1s clear in some
achievable state and there is free space on
another object. then the first object can be
moved from 1s present location to the new
location. However, an object cannot be

moved onto itself Moving creates a new
state in which the moved object 1s st1ll clear

Xpos(®yv.”xpos.”s)

—

Xpos(”x.”xpos.Do(Transfer("x.,7y').7s))

|
but (possibly) at a new location. J

After a transfer, the object moved 1s centered
(in the X-direction) on the object upon which
1t 1s placed.

oy
He:ght("x.”hx)
Ypos(™v.”vpos.?s)

7. pes2 = ("hx + ?vpos)

Y pos("x.”vpos2.Do(Transfer(?x.?v).’s))

After a transfer the }'-position of the object
moved is determined by adding its height to
the }-position of the object upon which 1t is

placed

"’u F3 '7-\,
Supports(u.”items.?s)
NotMember(?x.”items)

—

Surportst?u ?items.Do(Transfer(?x.?v).”s))

If an object neither supports the meoved object |
hefore the transfer. nor is the new supporter, !
then the collection cf objecis it supports

remains unchanged.

'7u = ')-\.

Supports(?u.?items.”s)
Member(”x.%items)
RemoveFromBag(”x.”items.”new)

—

Supports(?u.”new .Do(Transfer(?x.7y).7s))

If an object is not the ner support of the !
moved object. but supporied it before the
transier. then the moved object must be ’
removed from the coliection of obiects being
supported.

;‘\ B WRWW LT S WU VR LWL Y LW WL W N TR R R T e Tt N T AT R T TR ST TR L T RNTET A TV T T LTE TRT AT AT TR T T ATR T T AT TR T IR u_-r"
“
. Acquiring General Iterative Concepts S0
(o
\.,..
\"'
oy
-2 References
* l
b Ahn. W., Mooney, R. J.. Brewer, W. F.. and DeJong. G. F. "Schema Acquisition from One Example:
e Psvchological Evidence for Explanation-Based Learning.” Proceedings of the Ninth Annual Conference of
A the Cognitie Science Society, pp. 50-57, Seattle. Wash., July 1987.
“t
:-:. Andreae, P. M., “Justified Generalization: Acquiring Procedures from Example.” Ph. D. Thesis. Department of
- Electrical Engineering and Computer Science. MIT, Cambridge, Mass., January 1984 (Also appears as
L. 3 Technical Report 834, MIT Al Laboratory).
' .
" Benanav. D., Kapur. D., and Narendran, P.. "Complexity of Matching Problems,” Proceedings of the Fi-st
:-r_ In:ernationai Conserence on Rewriting Techniques and Applicazions, Dijon, France. May 198S.
A
o Cheng. P.. and Carbonell. J. G., "The FERMI System. Inducing lterative Macro-operators from Experience.”
. - Proceedings of the Nuational Conference on Artificial Intelligence, pp 490-1495. Philadelphia. Penn.,
' August 1986.
..:': Chien. S. A.. "Simplifications in Temporal Persistence: An Approach to the Intractable Domain Theorv
\-2 Problem in Explanation-Based Learning.” M.S. Thesis. Department of Computer Science. University of
:"4', Illinois. Urbana, Ill.. September 198~ (Also appears as Technical Repert UILU-ENG-87-2255. Al
\.f,' Research Group. Coordinated Science Laboratory.)
g
® Cohen. W. W, “A Technique for Generalizing Number in Explanation-Based Learning.” Technical Report
T ML-TR-19. Department of Computer Science. Rutgers University, New Brunswick, New Jersey.
September 1987,
AR DeJong. G. F.. and Mooney, R. J.. "Explanation-Based Learning: An Alternative \iew.” Machine Lea~ning.
.. Vol. 1. No. 2. pp. 145-176, April 1986.
! Dietterich. T.. and Michalski. R. S.. "Discovering Patterns in Sequences of Objects.” Proceedings of the 1983
< Inte~national Machine Learning Workshop, Urbana, Ill.. pp. 41-57. June 1983
.
-_3'_- Dufay. B.. and Latombe, J.. "An Approach 1o Automatic Robot Programming Based on Inductive Learning.” in
o Rohot:ics Resexrch. The First International Symposium. MIT Press. pp. 97-115, Cambridge. Mass.. 1984,
-
i) Eitman. T "Generalizing Logic Circuit Designs by Analvzing Proofs of Correctness.” Proceedings of the Ninth
> Jnrermational Join: Conference on Artificial Inrelligence. pp. 643-646. Los Anpeles. Calif.. August 1985
:-: Fliman. T.. "Explanation-Based Learning. A Survev of Programs and Perspectives.” Technical Report.
N Department of Computer Science. Columbia University. New York Cityv, New York. Nayv 1987,
I.‘
. Fahlman. S.. "A Planning Svstem for Robot Construction Tasks.” Ariificial /nielligence, Vol &, No. 1, pp. 1-
® 19,1971,
o
e Fikes. R. E.. and Nilsson. N J.. "STRIPS. A New Approach to the Application of Theorem Proving to Problem
K N Sclving.” A-tificial [nrelligence. Vol 2. No. 374, pp. 189-208. 1971.
W
) »
* Fikes. R E., Hart. P. E.. and Nilsson. N. J.. -Learnmg and Executing Generalized Robot Plans.” Artifciul
® [~telligece, Vol 3. No. 4. pp. 251-288. 1972,
k‘ Fikes, R.. "Deductive Retrieval Mechamsms for State Description Models." Proceedings of the Fourth
"o Internationu! Join: Corfererce or Ariinciul /nielligerce, pp. 99-106. Tiblisi. Georgia. U.S.S.R..
) August 1975,
N £
-~
N Green. C. .. "Application of Theorem Proving to Problem Solving,” Proceedirgs of the First Internationd!
"’.1 Joint Conference on Artifcial Jtellivence. pp. 219-239 Washington, D C.. August 1960,
~
ro
~ . .
Y Hirsh H | "Explanation-Baced Generalization in & Logic-Programming Environment.” Procecdings of tie Torth
~D
%9
g
o
@
o
‘-'
RS S L L W R T T AT R T el e A N SRl AT SRS A A
.’\, ’.'-‘ '. ." L’ o " f"}-l’ y '-"'v'-"-" ,'I'p."i - :.,‘-'.'~"-"'-J\f'l\.’"(&'{'- "‘.'\- ‘I \ "" '.‘\j""'u:\

.

e

£ .
4y

LAV

S8y
»

Tas

“x & a
.' l..

WWWW A A A 2t AT ad " ok i’ alinr .. 20 ot St Sab ol Sad Aol Y Y Y A0 At A4 i Al Al Ale "l i i

Acquiring General Iterative Concepts Sl

International Joint Conference on Arzificial Intelligence. pp 221-227 \ilan. ltalv iugast 19487

Holder. L. B., "Discovering Substructures in Examples,” M.S. Thesis (in preparation’ Depariment o Compuer
Science, University of [llinois. Urbana, [11

Kedar-Cabelli. S. T., and McCarty. L T., "Explanation-Based Generalization as Resolution Theorem Provin,.’
Proceedings of the 1987 International Machine Learning Workshop. pp. 383-389 Irvine. Calif
June 198~

Keiler, R. M., "Defining Operationality for Explanation-Based Learming.” Proceedings o7 he Natiorg
Conference on Artificial Intelligence, pp 482-487, Seattle, Wash., Julv 198~

Kodratoff. Y.. A Class of Functions Synthesized from a Finite Number of Exampies and a LISF Program
Scheme.” /nternational Journal of Computer and Information Sciences. Vol 8. No o, pp. 489-521 .97%.

Laird. J.. Rosenbloom. P.. and Newell, A, 'Chunkmg in Soar- The Anatomv c¢f a General learming
Mechanism.” Machine Learning. Vol 1. No. 1, pp. 11-46, Januarv 1986,

Manna, Z., Mathematical Theory of Computation, McGraw-Hill. New York. NY. 1974

McCarthy, J.. “Situations, Actions. and Causal Laws,” memorandum. Stantord Univeraty Stanford
Calif., 1963. (Reprinted in Semantic Informatior Processing. M. Minskv {Ed). MIT Press. pp. 410-437
Cambridge. Mass.. 1968.)

Michalski. R. S.. A Theory and Methodology of Inductive Learning” in Machine Lecrning a7 AJ Arntoxcs
R S. Michalski. J. G. Carbonell. and T. M. Mitchell (Eds.), pp. 83-134. Tioga Paio Allo Calif, 1383

“Minton. S. N., "Selectively Generalizing Plans for Problem-Solving,” P-oceedinis o the Norte [rter-ctiorg
Join: Confeence or Artificial Inelligence. pp. $96-599, Los Angeles. Calif . August 1985

Minton. S. N, Carbonell. J. G.. Etzioni, O.. Knoblock, C. A.. Kuokka. D. R. "Acquiring Effective Search
Control Rules: Explanation-Based Learning in the PRODIGY Svstem.’ Procred nus or the Fourts
Inienational Workshop on Machine Learning Artificial Intelligence. pp 122-133 Irvine. Calu
June 198°.

Mitchell. T. M., Mahadevan. S.. and Steinberg, L. I.. "LEAP: A learning Apprentice tor \M1S] Desipn!
Proceedings of the Ninth International Joint Conjerence on Artificial Intell gence. pp £73-580. Los
Angeles. Calif.. August 1985.

Mitchetl. T. M., Keller. R., and Kedar-Cabelli. S., "Explanation-Based Generalization. A Unifying Vies
Muchine Learning. Vol. 1. No. 1. pp. 47-80, January 1986.

Mooney. R. J.. and Bennett. S. W.. "A Domain Independent Explanation-Based Generalizer.” Poceecings of 1
National Conference on Artificiul Inteiligence. pp. 3£1-555, Philadelphia. Penn.. August 1986

Moonev. R. J.. "A General Explanation-Based Learning Mechanism and it Applicauen 1o Narrative
Understanding.” Ph.D. Thesis. Department of (Computer Science, Umiversitv of ilinois. Urbana
I11.. 1988, (Also appears as Technical Report UILU-ENG-87-2269. Al Research Greup. Coordinated
Science Laboratoryv.)

Niisson, N. J.. Principies of Artificiul Intellivence. Tioga. Palo Alto. Calif.. 1980,
O'Rorke. P. V., "Explanation-Based Learning via (onstraint Posting and Propapation” Ph D Theas

Department of Computer Science. University of [{linots. Urbana. 111, 1987a (\s0 appears as Techricai
Report UILU-ENG-87-2239. Al Research Group. Coordinated Science Laboratorv. !

------- . LT Revisited: Experimental Results of Applviny Explanation-Bused Learniny to the Lovic of Prinapio
Mathematica.” Proceedings of the 1957 /niernctioral \lacn.ne Lecrnimg Worvvop pp. 148- 159 Irvane

A ndh Bath S v—rv—v_"-j-‘-T

ry ABe A% B e i bt e R Sdn Bt Abe S A6 SAa Al Bt Iaban RS Sha St LA SR L Ja She i RSa_RAs St A e St ' A A il Bl Aol Bl Sl Aol Bal Bl el Bt Bl e i ",","_"

™, v
-":i’

vy) . 3

A Acquiring General Iterative Concepts 52

Y

:: Calif., June 1987b.

o
h-, Prieditis, A. E.. "Discovery of Algorithms from Weak Methods,” Proceedings of the International Meeting on
* Advances in Learning. pp. 37-52. Les Arcs. Switzerland 1986. (An updated version appears in
‘o Machine Learning: An Artificial Intelligence Approach, Vol III, R. S. Michalski and Y. Kodratroff
: ,: (Eds.). Morgan Kaufman. Los Altos. Crlif.)

N
oA
o Prieditis, A. E. and Mostow, J., "PROLEARN: Towards a Prolog Interpreter that Learns.” Proceedings of the
) : Nutional Conference on Artificial Intelligence, pp. 494-498, Seatile, Wash, July 1987,
,‘ Rajamoney. S., and DeJong. G. F.. "The Classification Detection and Handling of Imperfect Theory Problems.”
O Proceedings of the Tenth International Joint {onference on Artijicial Intelligence, pp. 205-207, Milan.
N Italy, August 1987,

’
=L)

:‘_".- Rendell. L. "Substantial Constructive Induction using Lavered Information Compression: Tractable Feature

’ Formation in Search.” Proceedings of the Ninth International Join: Conference on Artifcial Intelligence.
: pp. 650-658. Los Angeles. Calif., August 1985.

- Segre. A. M., "On the Operationality/Generality Trade-off in Explanation-Based Learning.” P-oceedings of the
.\;, Tenth Interrational Joint Conference on Artificial Intelligence, pp. 242-248, Milan, Italv, August 1987,
P~ Shavlik. J. W.. "Generalizing the Structure of Explanations in Explanation-Based Learning.” Ph.D. Thesis,

a Depariment of Computer Science. University of Illinois. Urbana. 111., 1988. (Available as a technical

. report from Al Research Group. Coordinated Science Laboratory.)

'_-'_-, Shavlik. J. W.. and DeJong. G. F., "Building a Computer Model of Learning Classical Mechanics.” Proceedings
ro of the Scventh Annual Conference of the Cogritive Science Society, pp. 3£1-355, Irvine. Calif,
2 August 198S.

. ——————— . "Analyzing \ariable Cancellations to Generalize Symbolic Mathematical Caiculations.” Proceedings of
- the Thi-d JEEE Conference on Artificial Intelligence Applications, Orlando, Fla., February 1987a.

‘- --=----. "BAGGER: An EBL Svstem that Extends and Generalizes Explanations,” Proceedirgs of the Natiora!
N Coneence on Artificial Inteiligence. pp. 516-520, Seattle. Wash., July 1987b.

Y ----—. "An Explanatior.-Based Approach to Generalizing Number.” Proceedings of the Tenta Internutional

Joimr Conrference on Artificial Intelligence. pp. 236-238, Milan. Italy. August 1987¢.
.
'_,':.j Shavlik. J. W., Dejong, G. F., and Ross. B. H.. "Acquiring Special Case Schemata in Explanation-Based
-'.,:. Learn:ng," Proceedings of the Ninth Annual Conference of the Cognitive Science Society, pp. 831-860.
SN Seattle. Wash.. July 1987,

: Siklossv. L., and Svkes. D. A.. "Automatic Program Synthesis from Example Problems.” Proceedings of the
R Fourtn International Joint Conference on Artificial Jn:eiligence, pp. 268-273, Thbilisi. Georygia.
o USSR 1975,

.
[

»

Steier. D.. "CYPRESS-Soar: A Case Study in Search and Learning in Algorithm Design.” Proceedings of the

,;{'

ho) Tentn [nterncrionai Joint Confererce o Artificicl Inteiligence, pp. 327-330. Milan, Italv, August 1987,
L.
®. Summers. P. D.. "A Methodologyv for LISP Program (Construction from Examples,” Journal of the Association
o for Cempaut.rg Muchinesv. Vol. 24, pp. 161-175. 1977,
,- Waldinger, R, "Achieviny Several Goals Simultaneously.” in Mackine Jnieligence 8. E. Elcock and D. Michie
" ‘Eds . Ellis Horwood Limited, London, 1977,
o .
'.' Weld DS, "The Uce of Agrrepation in Casual Simulation.” ArtiAciael Intelligence. Vol, 30. No. 1. pp. 1-34,
L, (xtober 198m,
fa >
JI
N
g
| ‘of'
'I
o

oo

- - . [N - . N T TPV N - R R RS R S

AN AT A N M SO A T S T L SRR SR N RS SR A S T S T L A P

. Y -f" L f" ";-fv)'*f’ N i "I P s 1'\ Ug .*“\-"\("y " ¥ - v ~ \."
) v £ 1] N 0 . T g)) L) o 0 B R o N ¥ - A B j

s 4

TN

AT AT A
NN
-J\

o

[L bl Rt e Lt ot Tf -as AL AT VAT, Boe ie Sl S e 4° 0 R B Rl Bat lad S> 4ur el Rat i oih gi gtg g il gt gl iul Eal bt Sal A Al S

>m

IR P
‘e

Acquiring General Iterative Concepts 53

Whitehall, B L.. "Substructure Discoverv in Executed Action Sequences.” M.S. Thesis, Department of
Computer Science. University of lllinois. Urbana. [1l.. September 1987 (Also appears as Technical
Report UILU-ENG-87-2256. Al Research Group. Coordinated Science Laboratory /.

Wolff. J. G.. "Language Acquisition, Data Compression and Generalization,” Language and Commun:cazion,
Vol. 2, No. 1, pp. 57-89, 1982.

AAREARMAAM AL A% MO s Salb el Aal Ay |

(RN

%

L8 S

R e e T

& dd

D)

B

|

%

@4

W W W
R
N

%

2.
~

2
o

s
e O\

P
i

s
u.“ ..¢...-,wu [®
FLe LS
- A
S0 1
o4
S L
55 %% Y
L L

